19 research outputs found

    The long and winding road leading to the successful introgression of downy mildew resistance into onion

    Get PDF
    Downy mildew resistance originating from Allium roylei Stearn provides a complete resistance to onions and is based on one, dominant gene. Since A. roylei can successfully be hybridized with onion (A. cepa L.), a breeding scheme aimed at the introgression of this gene was initiated ca. 20 years ago. Several setbacks in this programme were encountered, firstly the identified molecular marker linked to the downy mildew resistance locus became increasingly difficult to use and finally lost its discriminating power and secondly the final step, making homozygous introgression lines (ILs), turned out to be more difficult then was hoped. GISH analysis showed that the chromosomal region harbouring the resistance locus was the only remaining piece of A. roylei in the nuclear background of onion and it also confirmed that this region was located on the distal end of chromosome 3. It was hypothesized that some factor present in the remaining A. roylei region was lethal when homozygously present in an onion genetic background. The identification of an individual with a smaller and more distally located introgression fragment and homozygous ILs in its progeny validated this hypothesis. With the help of these nearly isogenic lines four AFLP® markers closely linked to the resistance gene were identified, which can be used for marker-aided selection. The introduction of downy mildew resistance caused by Peronospora destructor into onion is a significant step forward in the development of environmentally-friendly onion cultivars.<br/>Downy mildew resistance originating from Allium roylei Stearn provides a complete resistance to onions and is based on one, dominant gene. Since A. roylei can successfully be hybridized with onion (A. cepa L.), a breeding scheme aimed at the introgression of this gene was initiated ca. 20 years ago. Several setbacks in this programme were encountered, firstly the identified molecular marker linked to the downy mildew resistance locus became increasingly difficult to use and finally lost its discriminating power and secondly the final step, making homozygous introgression lines (ILs), turned out to be more difficult then was hoped. GISH analysis showed that the chromosomal region harbouring the resistance locus was the only remaining piece of A. roylei in the nuclear background of onion and it also confirmed that this region was located on the distal end of chromosome 3. It was hypothesized that some factor present in the remaining A. roylei region was lethal when homozygously present in an onion genetic background. The identification of an individual with a smaller and more distally located introgression fragment and homozygous ILs in its progeny validated this hypothesis. With the help of these nearly isogenic lines four AFLP (R) markers closely linked to the resistance gene were identified, which can be used for marker-aided selection. The introduction of downy mildew resistance caused by Peronospora destructor into onion is a significant step forward in the development of environmentally-friendly onion cultivars

    Prevention of tick bites: an evaluation of a smartphone app.

    Get PDF
    Lyme borreliosis (LB) is the most common reported tick-borne infection in Europe, and involves transmission of Borrelia by ticks. As long as a vaccine is not available and effective measures for controlling tick populations are insufficient, LB control is focused on preventive measures to avoid tick bites. To inform citizens about the risk of ticks, motivate them to check for tick bites, and encourage them to remove any attached tick as quickly as possible, a mobile app called 'Tekenbeet' (Dutch for 'tick bite') was developed and released. The aim of this study was to evaluate the usage and user satisfaction of the 'Tekenbeet' app and to investigate whether it affects users' knowledge, perceived severity, perceived susceptibility, self-efficacy, response efficacy, current behavior and intention to comply with preventive measures

    Prevention of tick bites: an evaluation of a smartphone app.

    No full text
    Lyme borreliosis (LB) is the most common reported tick-borne infection in Europe, and involves transmission of Borrelia by ticks. As long as a vaccine is not available and effective measures for controlling tick populations are insufficient, LB control is focused on preventive measures to avoid tick bites. To inform citizens about the risk of ticks, motivate them to check for tick bites, and encourage them to remove any attached tick as quickly as possible, a mobile app called 'Tekenbeet' (Dutch for 'tick bite') was developed and released. The aim of this study was to evaluate the usage and user satisfaction of the 'Tekenbeet' app and to investigate whether it affects users' knowledge, perceived severity, perceived susceptibility, self-efficacy, response efficacy, current behavior and intention to comply with preventive measures

    Trots op Nederland: Hugo de Groot en het natuurlijk recht op immigratie

    No full text
    Abstract Molecular markers based upon a novel lettuce LTR retrotransposon and the nucleotide binding site-leucine-rich repeat (NBS-LRR) family of disease resistance-associated genes have been combined with AFLP markers to generate a 458 locus genetic linkage map for lettuce. A total of 187 retrotransposon-specific SSAP markers, 29 NBS-LRR markers and 242 AFLP markers were mapped in an F2 population, derived from an interspecific cross between a Lactuca sativa cultivar commonly used in Europe and a wild Lactuca serriola isolate from Northern Europe. The cross has been designed to aid efforts to assess gene flow from cultivated lettuce into the wild in the perspective of genetic modification biosafety. The markers were mapped in nine major and one minor linkage groups spanning 1,266.1 cM, with an average distance of 2.8 cM between adjacent mapped markers. The markers are well distributed throughout the lettuce genome, with limited clustering of different marker types. Seventy-seven of the AFLP markers have been mapped previously and cross-comparison shows that the map from this study corresponds well with the previous linkage map

    Analysis of gene flow in the lettuce crop-weed complex

    No full text
    Cultivated lettuce, Lactuca sativa, and wild prickly lettuce, L. serriola, have been shown to be closely related, if not conspecific. Even though both species are regarded as basically self-pollinating, outcrossing does occur, however to an unknown extent. In the context of an EU-funded project (acronym 'ANGEL'), an attempt is made to assess the level of gene flow between cultivated and wild forms by comparing the two, using the molecular marker systems of amplified fragment length polymorphism (AFLP) and the retrotransposon-based sequence-specific amplified polymorphism (SSAP). In addition, a marker system targeting disease resistance genes and gene analogues, called NBS (nucleotide-binding site)-directed profiling, is implemented in order to screen variation in genomic regions expected to be relevant for plant fitness and to play an important role in plant breeding

    Two high-density AFLP linkage maps of Zea mays L. : analysis of distribution of AFLP markers

    No full text
    This study demonstrates the relative ease of generating high-density linkage maps using the AFLP(R) technology. Two high-density AFLP linkage maps of Zea mays L. were generated based on: (1) a B73 x Mo17 recombinant inbred population and (2) a D32 x D145 immortalized F-2 population. Although AFLP technology is in essence a mono-allelic marker system, markers can be scored quantitatively and used to deduce zygosity. AFLP markers were generated using the enzyme combinations EcoRI/MseI and PstI/MseI. A total of 1539 and 1355 AFLP markers have been mapped in the two populations, respectively. Among the mapped PstI/MseI AFLP markers we have included fragments bounded by a methylated PstI site ((m)AFLP markers). Mapping these (m)AFLP markers shows that the presence of C-methylation segregates in perfect accordance with the primary target sequence, leading to Mendelian inheritance. Simultaneous mapping of PstI/MseI AFLP and PstI/MseI (m)AFLP markers allowed us to identify a number of epi-alleles, showing allelic variation in the CpNpG methylation only. However, their frequency in maize is low. Map comparison shows that, despite some rearrangements, most of the AFLP markers that are common in both populations, map at similar positions, This would indicate that AFLP markers are predominantly single-locus markers. Changes in map order occur mainly in marker-dense regions. These marker-dense regions, representing clusters of mainly EcoRI/MseI AFLP and PstI/MseI (m)AFLP markers, colocalize well with the putative centromeric regions of the maize chromosomes. In contrast, PstI/MseI markers are more uniformly distributed over the genome
    corecore