100 research outputs found

    Microscale thermophoresis and docking studies suggest lapachol and auraptene are ligands of IDO1.

    Get PDF
    Indoleamine 2,3-dioxygenase 1 (IDO1) is a key target for the development of small molecule immunotherapies in oncology. In this framework, the screening of chemotherapeutic agents to identify compounds binding to IDO1 represents a valuable strategy for the development of multitarget drug candidates that combine synergic immunoregulatory properties to cytotoxic activity. In this study, we report that two natural compounds endowed with anticancer activity, namely lapachol and auraptene, act as IDO1 ligands with dissociation constant (Kd) in the micromolar range of potency. Docking studies provide plausible binding modes of these compounds to the catalytic cleft of IDO1. Our results support the notion that lapachol and auraptene may be considered interesting lead compounds in the immuno-oncology setting

    A novel integrated industrial approach with cobots in the age of industry 4.0 through conversational interaction and computer vision

    Get PDF
    From robots that replace workers to robots that serve as helpful colleagues, the field of robotic automation is experiencing a new trend that represents a huge challenge for component manufacturers. The contribution starts from an innovative vision that sees an ever closer collaboration between Cobot, able to do a specific physical job with precision, the AI world, able to analyze information and support the decision-making process, and the man able to have a strategic vision of the future

    Binding properties of different categories of IDO1 inhibitors: a microscale thermophoresis study

    Get PDF
    Aim: Inhibition of IDO1 is a strategy pursued in the immune-oncology pipeline for the development of novel anticancer therapies. At odds with an ever-increasing number of inhibitors being disclosed in the literature and patent applications, only very few compounds have hitherto advanced in clinical settings. Materials & methods: We have used MicroScale Thermophoresis analysis and docking calculations to assess on a quantitative basis the binding properties of distinct categories of inhibitors to IDO1. Results: Results shed further light on hidden molecular aspects governing the recognition by the enzyme of compounds with different mechanism of inhibition. Conclusion: Results pinpoint specific binding features of distinct inhibitors to IDO1 that offer clues for the design of next-generation inhibitors of the enzyme

    Fragment-based approach to identify IDO1 inhibitor building blocks

    Get PDF
    Abstract Indoleamine 2,3-dioxygenase 1 (IDO1) is attracting a great deal of interest as drug target in immune-oncology being highly expressed in cancer cells and participating to the tumor immune-editing process. Although several classes of IDO1 inhibitors have been reported in literature and patent applications, only few compounds have proved optimal pharmacological profile in preclinical studies to be advanced in clinical trials. Accordingly, the quest for novel structural classes of IDO1 inhibitors is still open. In this paper, we report a fragment-based screening campaign that combines Water-LOGSY NMR experiments and microscale thermophoresis approach to identify fragments that may be helpful for the development of novel IDO1 inhibitors as therapeutic agents in immune-oncology disorders

    Design, synthesis and biological evaluation of novel bicyclo[1.1.1]pentane-basedx-acidic amino acids as glutamate receptors ligands

    Get PDF
    A novel series of bicyclo[1.1.1]pentane-based x-acidic amino acids, including (2S)- and (2R)-3-(30-carboxybicyclo[ 1.1.1]pentyl)alanines (8 and 9), (2S)- and (2R)-2-(30-carboxymethylbicyclo[1.1.1]pentyl)glycines (10 and 11), and (2S)- and (2R)-3-(30-phosphonomethylbicyclo[1.1.1]pentyl)glycines (12 and 13), were synthesized and evaluated as glutamate receptor ligands. Among them, (2R)-3-(30-phosphonomethylbicyclo[ 1.1.1]pentyl)glycine (13) showed relatively high affinity and selectivity at the NMDA receptor. The results are also discussed in light of pharmacophoric modelling studies of NMDA agonists and antagonists

    The Combination of Molnupiravir with Nirmatrelvir or GC376 Has a Synergic Role in the Inhibition of SARS-CoV-2 Replication In Vitro

    Get PDF
    Introduction: The development of effective vaccines has partially mitigated the trend of the SARS-CoV-2 pandemic; however, the need for orally administered antiviral drugs persists. This study aims to investigate the activity of molnupiravir in combination with nirmatrelvir or GC376 on SARS-CoV-2 to verify the synergistic effect. Methods: The SARS-CoV-2 strains 20A.EU, BA.1 and BA.2 were used to infect Vero E6 in presence of antiviral compounds alone or in combinations using five two-fold serial dilution of compound concentrations <= EC90. After 48 and 72 h post-infection, viability was performed using MTT reduction assay. Supernatants were collected for plaque-assay titration. All experiments were performed in triplicate, each being repeated at least three times. The synergistic score was calculated using Synergy Finder version 2. Results: All compounds reached micromolar EC90. Molnupiravir and GC376 showed a synergistic activity at 48 h with an HSA score of 19.33 (p < 0.0001) and an additive activity at 72 h with an HSA score of 8.61 (p < 0.0001). Molnupiravir and nirmatrelvir showed a synergistic activity both at 48 h and 72 h with an HSA score of 14.2 (p = 0.01) and 13.08 (p < 0.0001), respectively. Conclusion: Molnupiravir associated with one of the two protease-inhibitors nirmatrelvir and GC376 showed good additive-synergic activity in vitro

    Interpretation of electrocardiogram in an ultra-marathon athlete: a case report

    Get PDF
    The electrocardiogram (ECG) of athletes, especially in those that are endurance-trained, frequently shows some alterations; however, abnormalities of athlete’s ECG may be an expression of an underlying heart disease, which carries a risk of sudden death during sport. It is important that ECG abnormalities are correctly distinguished. We report a case of an ultramarathon athlete who arrived in Emergency Department, after a 100 kilometres race, showing ECG alterations that required further investigations to rule out a cardiac disease. ECG trace showed anterior repolarization abnormalities with ST-segment elevation in V1 to V3 leads. He was admitted in the Cardiology Department and underwent a coronary study that was normal. A cardiac magnetic resonance was also performed. The final diagnosis was athlete’s heart

    Biological Evaluation of New Thienopyridinium and Thienopyrimidinium Derivatives as Human Choline Kinase Inhibitors

    Get PDF
    Due to its role in lipid biosynthesis, choline kinase α1 (CKα1) is an interesting target for the development of new antitumor agents. In this work, we present a series of 41 compounds designed based on the well-known and successful strategy of introducing thienopyridine and pyrimidine as bioisosteres of other heterocycles in active antitumor compounds. Notwithstanding the fact that some of these compounds do not show significant enzymatic inhibition, others, in contrast, feature substantially improved enzymatic and antiproliferative inhibition values. This is also confirmed by docking analysis, whereby compounds with longer linkers and thienopyrimidine cationic head have been identified as the most compelling. Among the best compounds is Ff-35, which inhibits the growth of different tumor cells at submicromolar concentrations. Moreover, Ff-35 is more potent in inhibiting CKα1 than other previous biscationic derivatives. Treatment of A549, Hela, and MDA-MB-231 cells with Ff-35 results in their arrest at the G1 phase of the cell cycle. Furthermore, the compound induces cellular apoptosis in a concentration-dependent manner. Altogether, these findings indicate that Ff-35 is a promising new chemotherapeutic agent with encouraging preclinical potential

    Epacadostat stabilizes the apo-form of IDO1 and signals a pro-tumorigenic pathway in human ovarian cancer cells

    Get PDF
    The tryptophan-degrading enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is a plastic immune checkpoint molecule that potently orchestrates immune responses within the tumor microenvironment (TME). As a heme-containing protein, IDO1 catalyzes the conversion of the essential amino acid tryptophan into immunoactive metabolites, called kynurenines. By depleting tryptophan and enriching the TME with kynurenines, IDO1 catalytic activity shapes an immunosuppressive TME. Accordingly, the inducible or constitutive IDO1 expression in cancer correlates with a negative prognosis for patients, representing one of the critical tumor-escape mechanisms. However, clinically trialed IDO1 catalytic inhibitors disappointed the expected anti-tumor efficacy. Interestingly, the non-enzymatic apo-form of IDO1 is still active as a transducing protein, capable of promoting an immunoregulatory phenotype in dendritic cells (DCs) as well as a pro-tumorigenic behavior in murine melanoma. Moreover, the IDO1 catalytic inhibitor epacadostat can induce a tolerogenic phenotype in plasmacytoid DCs, overcoming the catalytic inhibition of IDO1. Based on this recent evidence, IDO1 plasticity was investigated in the human ovarian cancer cell line, SKOV-3, that constitutively expresses IDO1 in a dynamic balance between the holo- and apo-protein, and thus potentially endowed with a dual function (i.e., enzymatic and non-enzymatic). Besides inhibiting the catalytic activity, epacadostat persistently stabilizes the apo-form of IDO1 protein, favoring its tyrosine-phosphorylation and promoting its association with the phosphatase SHP-2. In SKOV-3 cells, both these early molecular events activate a signaling pathway transduced by IDO1 apo-protein, which is independent of its catalytic activity and contributes to the tumorigenic phenotype of SKOV-3 cells. Overall, our findings unveiled a new mechanism of action of epacadostat on IDO1 target, repositioning the catalytic inhibitor as a stabilizer of the apo-form of IDO1, still capable of transducing a pro-tumorigenic pathway in SKOV-3 tumor. This mechanism could contribute to clarify the lack of effectiveness of epacadostat in clinical trials and shed light on innovative immunotherapeutic strategies to tackle IDO1 target

    3-hydroxy-L-kynurenamine is an immunomodulatory biogenic amine

    Get PDF
    Tryptophan catabolism is a major metabolic pathway utilized by several professional and non-professional antigen presenting cells to maintain immunological tolerance. Here we report that 3-hydroxy-l-kynurenamine (3-HKA) is a biogenic amine produced via an alternative pathway of tryptophan metabolism. In vitro, 3-HKA has an anti-inflammatory profile by inhibiting the IFN-gamma mediated STAT1/NF-kappa Beta pathway in both mouse and human dendritic cells (DCs) with a consequent decrease in the release of pro-inflammatory chemokines and cytokines, most notably TNF, IL-6, and IL12p70. 3-HKA has protective effects in an experimental mouse model of psoriasis by decreasing skin thickness, erythema, scaling and fissuring, reducing TNF, IL-1 beta, IFN-gamma, and IL-17 production, and inhibiting generation of effector CD8(+) T cells. Similarly, in a mouse model of nephrotoxic nephritis, besides reducing inflammatory cytokines, 3-HKA improves proteinuria and serum urea nitrogen, overall ameliorating immune-mediated glomerulonephritis and renal dysfunction. Overall, we propose that this biogenic amine is a crucial component of tryptophan-mediated immune tolerance. 3-hydroxy-L-kynurenamine (3-HKA) is a metabolite deriving from a lateral pathway of tryptophan catabolism. Here the authors identify 3-HKA as a biogenic amine and show it has anti-inflammatory properties that can protect mice against psoriasis and nephrotoxic nephritis.Peer reviewe
    • …
    corecore