97 research outputs found
Mid-IR spectra of pre-main sequence Herbig stars : an explanation for the non-detections of water lines
The research leading to these results has received funding from the European Union Seventh Framework Programme FP7-2011 under grant agreement No. 284405.Context. The mid-IR detection rate of water lines in disks around Herbig stars disks is about 5%, while it is around 50% for disks around T Tauri stars. The reason for this is still unclear. Aims. In this study, we want to find an explanation for the different detection rates between low mass and high mass pre-main-sequence stars in the mid-IR regime. Methods. We ran disk models with stellar parameters adjusted to spectral types B9 through M2, using the radiation thermo-chemical disk modelling code ProDiMo. We explored also a small parameter space around a standard disk model, considering dust-to-gas mass ratio, disk gas mass, mixing coefficient for dust settling, flaring index, dust maximum size, and size power law distribution index. We produced convolved spectra at the resolution of Spitzer, IRS, JWST MIRI, and VLT VISIR spectrographs. We applied random noise derived from typical Spitzer spectra for a direct comparison with observations. Results. The strength of the mid-IR water lines correlates directly with the luminosity of the central star. The models show that it is possible to suppress the water emission; however, current observations are not sensitive enough to detect mid-IR lines in disks for most of the explored parameters. The presence of noise in the spectra, combined with the high continuum flux (noise level is proportional to the continuum flux), is the most likely explanation for the non-detections towards Herbig stars. Conclusions. Mid-IR spectra with resolution higher than 20 000 are needed to investigate water in protoplanetary disks. Intrinsic differences in disk structure, such as inner gaps, gas-to-dust ratio, dust size and distribution, and inner disk scale height, between Herbig and T Tauri star disks are able to explain a lower water detection rate in disks around Herbig stars.Publisher PDFPeer reviewe
Spatial distribution of micrometre‐scale porosity and permeability across the damage zone of a reverse‐reactivated normal fault in a tight sandstone : Insights from the Otway Basin, SE Australia
This research forms part of a PhD project supported by the Australian Research Council [Discovery Project DP160101158] and through an Australian Government Research Training Program Scholarship. Dave Healy acknowledges the support of the Natural Environment Research Council (NERC, UK) through the award NE/N003063/1 ‘Quantifying the Anisotropy of Permeability in Stressed Rock’. This study was also funded by scholarships from the Petroleum Exploration Society of Australia and the Australian Petroleum Production and Exploration Association. We thank Gordon Holm for preparing thin sections and Colin Taylor for carrying out particle size measurements and mercury injection capillary pressure analyses. Aoife McFadden and David Kelsey from Adelaide Microscopy, Braden Morgan, and Sophie Harland are acknowledged for their assistance with laboratory work. Field assistants James Hall, Rowan Hansberry, and Lachlan Furness are also gratefully acknowledged for their assistance with sample collection. Discussions with Ian Duddy on the mineralogy of the Eumeralla Formation are also greatly appreciated. This forms TRaX record 416.Peer reviewedPublisher PD
Mid-IR water and silicate relation in protoplanetary disks
The research leading to these results has received funding from the European Union Seventh Framework Programme FP7-2011 under grant agreement No. 284405.Context. Mid-IR water lines from protoplanetary disks around T Tauri stars have a detection rate of 50%. Models have identified multiple physical properties of disks such as dust-to-gas mass ratio, dust size power law distribution, disk gas mass, disk inner radius, and disk scale height as potential explanations for the current detection rate. Aims. In this study, we aim to break degeneracies through constraints obtained from observations. We search for a connection between mid-IR water line fluxes and the strength of the 10 μm silicate feature. Methods. We analyze observed water line fluxes from three blends at 15.17, 17.22 and 29.85 μm published earlier and compute the 10 μm silicate feature strength from Spitzer spectra to search for possible trends. We use a series of published ProDiMo thermo-chemical models, to explore disk dust and gas properties, and also the effects of different central stars. In addition, we produced two standard models with different dust opacity functions, and one with a parametric prescription for the dust settling. Results. Our series of models that vary properties of the grain size distribution suggest that mid-IR water emission anticorrelates with the strength of the 10 μm silicate feature. The models also show that the increasing stellar bolometric luminosity simultaneously enhance the strength of this dust feature and the water lines fluxes. No correlation is found between the observed mid-IR water lines and the 10 μm silicate strength. Two-thirds of the targets in our sample show crystalline dust features, and the disks are mainly flaring. Our sample shows the same difference in the peak strength between amorphous and crystalline silicates that was noted in earlier studies, but our models do not support this intrinsic difference in silicate peak strength. Individual properties of our models are not able to reproduce the most extreme observations, suggesting that more complex dust properties (e.g., vertically changing) are required to reproduce the strongest 10 μm silicate features. A parametrized settling prescription is able to boost the peak strength by a factor of 2 for the standard model. Water line fluxes are unrelated to the composition of the dust. The pronounced regular trends seen in the model results are washed out in the data due to the larger diversity in stellar and disk properties compared to our series of model. Conclusions. The independent nature of the water line emission and the 10 μm silicate strength found in observations, and the modeling results, leave as a possible explanation that the disks with weaker mid-IR water line fluxes are depleted in gas or enhanced in dust in the inner 10 au. In the case of gas depleted disks, settling produces very strong 10 μm silicate features with strong peak strength. Observations of larger unbiased samples with JWST/MIRI and ALMA are essential to verify this hypothesis.PostprintPeer reviewe
Understanding the water emission in the mid- and far-IR from protoplanetary disks around T Tauri stars
The research leading to these results has received funding from the European Union Seventh Framework Programme FP7-2011 under grant agreement no 284405.Aims. We investigate which properties of protoplanetary disks around T Tauri stars affect the physics and chemistry in the regions where mid- and far-IR water lines originate and their respective line fluxes. We search for diagnostics for future observations. Methods. With the code ProDiMo, we build a series of models exploring a large parameter space, computing rotational and ro-vibrational transitions of water in nonlocal thermodynamic equilibrium (non-LTE). We select a sample of transitions in the mid-IR regime and the fundamental ortho and para water transitions in the far-IR. We investigate the chemistry and the local physical conditions in the line emitting regions. We calculate Spitzer spectra for each model and compare far-IR and mid-IR lines. In addition, we use mid-IR colors to tie the water line predictions to the dust continuum. Results. Parameters affecting the water line fluxes in disks by more than a factor of three are: the disk gas mass, the dust-to-gas mass ratio, the dust maximum grain size, interstellar medium (ISM) UV radiation field, the mixing parameter of Dubrulle settling, the disk flaring parameter, and the dust size distribution. The first four parameters affect the mid-IR lines much more than the far-IR lines. Conclusions. A key driver behind water spectroscopy is the dust opacity, which sets the location of the water line emitting region. We identify three types of parameters, including those (1) affecting global disk opacity and opacity function (maximum dust size and dust size distribution); (2) affecting global disk opacity (dust-to-gas mass ratio, Dubrulle settling, disk gas mass); and (3) not affecting disk opacity (flaring parameter, ISM UV radiation field, fraction of PAHs). Parameters, such as dust-to-gas ratio, ISM radiation field, and dust size distribution, affect the mid-IR lines more, while the far-IR transitions are more affected by the flaring index. The gas mass greatly affects lines in both regimes. Higher spectral resolution and line sensitivities, like from the James Webb Space Telescope, are needed to detect a statistically relevant sample of individual water lines to distinguish further between these types of parameters.Publisher PDFPeer reviewe
Flow processes and pressure evolution in aquifers during the injection of supercritical CO2 as a greenhouse gas mitigation measure
Regional saline aquifers offer the greatest potential for very large-scale underground CO2 storage as a means of mitigating greenhouse gas emissions. Their dynamic storage capacity, in terms of induced increases in formation pressure, will limit the rate at which CO2 can be injected and may ultimately limit the amount of CO2 that can be stored. Generic flow models were generated to examine the effects on pressure evolution of various reservoir parameters (dimensions, permeability, porosity, presence and nature of flow barriers). CO2 injection involves dominantly hydrogeological (single-phase flow) processes in much of the reservoir and surrounding adjacent strata, with additional two-phase flow effects around the CO2 plume itself. Large, thick aquifers with no significant flow barriers can accept high injection rates (c. 10 million tonnes of CO2 per year) without undue pressure effects. However, flow barriers, such as faults, increase induced pressures considerably; for reservoirs with such features, careful site characterization and operational planning will be required for large storage projects. The principles established from the generic modelling were applied to a real aquifer storage operation at Sleipner in the North Sea. Here, CO2 is being injected into the Utsira Sand, a large relatively homogeneous reservoir. Modelling indicates that pressure increase should be negligible. In fact, observed wellhead pressures do show a small rise, but this can be attributed to temperature changes in the fluid column in the wellbore. Pressure changes in the reservoir are likely to be very small
The effects of climate change on the hydrology and groundwater of Terceira island (Azores)
Until recently the water flowing from rain fed springs was abundant enough on Terceira
(Azores, Portugal) and groundwater exploration was limited to the Lajes basin. This
paper discusses the effects of climate change on the hydrology of Terceira and presents
an estimate of the size of the fresh water lens underneath the whole island of Terceira
using fault orientation as an indication for conductivity anisotropy. Longer periods of
drought are thought to be one of the effects of greenhouse warming for Terceira and
the exploration and exploitation of the freshwater lens may become necessary
- …