1,261 research outputs found

    The subcellular localization of the ChoRE-binding protein, encoded by the Williams-Beuren syndrome critical region gene 14, is regulated by 14-3-3

    Get PDF
    The Williams-Beuren syndrome (WBS) is a contiguous gene syndrome caused by chromosomal rearrangements at chromosome band 7q11.23. Several endocrine phenotypes, in particular impaired glucose tolerance and silent diabetes, have been described for this clinically complex disorder. The WBSCR14 gene, one of the genes mapping to the WBS critical region, encodes a member of the basic-helix-loop-helix leucine zipper family of transcription factors, which dimerizes with the Max-like protein, Mlx. This heterodimeric complex binds and activates, in a glucose-dependent manner, carbohydrate response element (ChoRE) motifs in the promoter of lipogenic enzymes. We identified five novel WBSCR14-interacting proteins, four 14-3-3 isotypes and NIF3L1, which form a single polypeptide complex in mammalian cells. Phosphatase treatment abrogates the association between WBSCR14 and 14-3-3, as shown previously for multiple 14-3-3 interactors. WBSCR14 is exported actively from the nucleus through a CRM1-dependent mechanism. This translocation is contingent upon the ability to bind 14-3-3. Through this mechanism the 14-3-3 isotypes directly affect the WBSCR14:Mlx complexes, which activate the transcription of lipogenic gene

    Three decades of the Human Genome Organization.

    Get PDF
    The Human Genome Organization (HUGO) was initially established in 1988 to help integrate international scientific genomic activity and to accelerate the diffusion of knowledge from the efforts of the human genome project. Its founding President was Victor McKusick. During the late 1980s and 1990s, HUGO organized lively gene mapping meetings to accurately place genes on the genome as chromosomes were being sequenced. With the completion of the Human Genome Project, HUGO went through some transitions and self-reflection. In 2020, HUGO (which hosts a large annual scientific meeting and comprises the renowned HUGO Gene Nomenclature Committee [HGNC], responsible for naming genes, and an outstanding Ethics Committee) was merged with the Human Genome Variation Society (HGVS; which defines the correct nomenclature for variation description) and the Human Variome Project (HVP; championed by the late Richard Cotton) into a single organization that is committed to assembling human genomic variation from all over the world. This consolidated effort, under a new Executive Board and seven focused committees, will facilitate efficient and effective communication and action to bring the benefits of increasing knowledge of genome diversity and biology to people all over the world

    A teratocarcinoma-like human embryonic stem cell (hESC) line and four hESC lines reveal potentially oncogenic genomic changes

    Get PDF
    The first Swiss human embryonic stem cell (hESC) line, CH-ES1, has shown features of a malignant cell line. It originated from the only single blastomere that survived cryopreservation of an embryo, and it more closely resembles teratocarcinoma lines than other hESC lines with respect to its abnormal karyotype and its formation of invasive tumors when injected into SCID mice. The aim of this study was to characterize the molecular basis of the oncogenicity of CH-ES1 cells, we looked for abnormal chromosomal copy number (by array Comparative Genomic Hybridization, aCGH) and single nucleotide polymorphisms (SNPs). To see how unique these changes were, we compared these results to data collected from the 2102Ep teratocarcinoma line and four hESC lines (H1, HS293, HS401 and SIVF-02) which displayed normal G-banding result. We identified genomic gains and losses in CH-ES1, including gains in areas containing several oncogenes. These features are similar to those observed in teratocarcinomas, and this explains the high malignancy. The CH-ES1 line was trisomic for chromosomes 1, 9, 12, 17, 19, 20 and X. Also the karyotypically (based on G-banding) normal hESC lines were also found to have several genomic changes that involved genes with known roles in cancer. The largest changes were found in the H1 line at passage number 56, when large 5 Mb duplications in chromosomes 1q32.2 and 22q12.2 were detected, but the losses and gains were seen already at passage 22. These changes found in the other lines highlight the importance of assessing the acquisition of genetic changes by hESCs before their use in regenerative medicine applications. They also point to the possibility that the acquisition of genetic changes by ESCs in culture may be used to explore certain aspects of the mechanisms regulating oncogenesis

    A teratocarcinoma-like human embryonic stem cell (hESC) line and four hESC lines reveal potentially oncogenic genomic changes

    Get PDF
    The first Swiss human embryonic stem cell (hESC) line, CH-ES1, has shown features of a malignant cell line. It originated from the only single blastomere that survived cryopreservation of an embryo, and it more closely resembles teratocarcinoma lines than other hESC lines with respect to its abnormal karyotype and its formation of invasive tumors when injected into SCID mice. The aim of this study was to characterize the molecular basis of the oncogenicity of CH-ES1 cells, we looked for abnormal chromosomal copy number (by array Comparative Genomic Hybridization, aCGH) and single nucleotide polymorphisms (SNPs). To see how unique these changes were, we compared these results to data collected from the 2102Ep teratocarcinoma line and four hESC lines (H1, HS293, HS401 and SIVF-02) which displayed normal G-banding result. We identified genomic gains and losses in CH-ES1, including gains in areas containing several oncogenes. These features are similar to those observed in teratocarcinomas, and this explains the high malignancy. The CH-ES1 line was trisomic for chromosomes 1, 9, 12, 17, 19, 20 and X. Also the karyotypically (based on G-banding) normal hESC lines were also found to have several genomic changes that involved genes with known roles in cancer. The largest changes were found in the H1 line at passage number 56, when large 5 Mb duplications in chromosomes 1q32.2 and 22q12.2 were detected, but the losses and gains were seen already at passage 22. These changes found in the other lines highlight the importance of assessing the acquisition of genetic changes by hESCs before their use in regenerative medicine applications. They also point to the possibility that the acquisition of genetic changes by ESCs in culture may be used to explore certain aspects of the mechanisms regulating oncogenesis

    TNPO3 protects HIV-1 replication from CPSF6-mediated capsid stabilization in the host cell cytoplasm

    Get PDF
    BACKGROUND: Despite intensive investigation the mechanism by which HIV-1 reaches the host cell nucleus is unknown. TNPO3, a karyopherin mediating nuclear entry of SR-proteins, was shown to be required for HIV-1 infectivity. Some investigators have reported that TNPO3 promotes HIV-1 nuclear import, as would be expected for a karyopherin. Yet, an equal number of investigators have failed to obtain evidence that supports this model. Here, a series of experiments were performed to better elucidate the mechanism by which TNPO3 promotes HIV-1 infectivity. RESULTS: To examine the role of TNPO3 in HIV-1 replication, the 2-LTR circles that are commonly used as a marker for HIV-1 nuclear entry were cloned after infection of TNPO3 knockdown cells. Potential explanation for the discrepancy in the literature concerning the effect of TNPO3 was provided by sequencing hundreds of these clones: a significant fraction resulted from autointegration into sites near the LTRs and therefore were not bona fide 2-LTR circles. In response to this finding, new techniques were developed to monitor HIV-1 cDNA, including qPCR reactions that distinguish 2-LTR circles from autointegrants, as well as massive parallel sequencing of HIV-1 cDNA. With these assays, TNPO3 knockdown was found to reduce the levels of 2-LTR circles. This finding was puzzling, though, since previous work has shown that the HIV-1 determinant for TNPO3-dependence is capsid (CA), an HIV-1 protein that forms a mega-dalton protein lattice in the cytoplasm. TNPO3 imports cellular splicing factors via their SR-domain. Attention was therefore directed towards CPSF6, an SR-protein that binds HIV-1 CA and inhibits HIV-1 nuclear import when the C-terminal SR-domain is deleted. The effect of 27 HIV-1 capsid mutants on sensitivity to TNPO3 knockdown was then found to correlate strongly with sensitivity to inhibition by a C-terminal deletion mutant of CPSF6 (R2 = 0.883, p \u3c 0.0001). TNPO3 knockdown was then shown to cause CPSF6 to accumulate in the cytoplasm. Mislocalization of CPSF6 to the cytoplasm, whether by TNPO3 knockdown, deletion of the CPSF6 nuclear localization signal, or by fusion of CPSF6 to a nuclear export signal, resulted in inhibition of HIV-1 replication. Additionally, targeting CPSF6 to the nucleus by fusion to a heterologous nuclear localization signal rescued HIV-1 from the inhibitory effects of TNPO3 knockdown. Finally, mislocalization of CPSF6 to the cytoplasm was associated with abnormal stabilization of the HIV-1 CA core. CONCLUSION: TNPO3 promotes HIV-1 infectivity indirectly, by shifting the CA-binding protein CPSF6 to the nucleus, thus preventing the excessive HIV-1 CA stability that would otherwise result from cytoplasmic accumulation of CPSF6

    Genomic structure of a copy of the human TPTE gene which encompasses 87kb on the short arm of chromosome 21

    Get PDF
    Abstract.: The testis-expressed human TPTE is a putative transmembrane tyrosine phosphatase, probably involved in signal transduction pathways of the endocrine and/or the spermatogenetic function of the testis. TPTE was mapped to the pericentromeric region of human chromosomes 21 and 13, and to chromosomes 15, 22, and Y. It is unknown which of the TPTE copies are transcribed, contain intronic sequences, and/or have open reading frames. Here, in silico analysis of the genomic sequence of human chromosome 21 allowed the determination of the genomic structure of a copy of the TPTE gene. This copy consists of 24 exons and spans approximately 87kb. The mapping position of this copy of TPTE on the short arm of chromosome 21 was confirmed by FISH using the BAC 15L0C0 clone as a probe that contains almost the entire TPTE gene. This is the first description of the genomic sequence of a non-RNR gene on the short arm of human acrocentric chromosome

    Comparative gene finding in chicken indicates that we are closing in on the set of multi-exonic widely expressed human genes

    Get PDF
    The recent availability of the chicken genome sequence poses the question of whether there are human protein-coding genes conserved in chicken that are currently not included in the human gene catalog. Here, we show, using comparative gene finding followed by experimental verification of exon pairs by RT-PCR, that the addition to the multi-exonic subset of this catalog could be as little as 0.2%, suggesting that we may be closing in on the human gene set. Our protocol, however, has two shortcomings: (i) the bioinformatic screening of the predicted genes, applied to filter out false positives, cannot handle intronless genes; and (ii) the experimental verification could fail to identify expression at a specific developmental time. This highlights the importance of developing methods that could provide a reliable estimate of the number of these two types of gene
    • 

    corecore