40 research outputs found

    Active dry granular flows: rheology and rigidity transitions

    Full text link
    The constitutive relations of a dense granular flow composed of self-propelling frictional hard particles are investigated by means of DEM numerical simulations. We show that the rheology, which relates the dynamical friction μ\mu and the volume fraction ϕ\phi to the inertial number II, depends on a dimensionless number A\mathcal{A}, which compares the active force to the confining pressure. Two liquid/solid transitions -- in the Maxwell rigidity sense -- are observed. As soon as the activity is turned on, the packing becomes an `active solid' with a mean number of particle contacts larger than the isostatic value. The quasi-static values of μ\mu and ϕ\phi decrease with A\mathcal{A}. At a finite value of the activity At\mathcal{A}_t, corresponding to the isostatic condition, a second `active rigidity transition' is observed beyond which the quasi-static values of the friction vanishes and the rheology becomes Newtonian. For A>At\mathcal{A}>\mathcal{A}_t, we provide evidence for a highly intermittent dynamics of this 'active fluid'.Comment: 7 pages, 7 figures, final version, accepted for publication in Europhys. Let

    Boltzmann-Ginzburg-Landau approach for continuous descriptions of generic Vicsek-like models

    Get PDF
    We describe a generic theoretical framework, denoted as the Boltzmann-Ginzburg-Landau approach, to derive continuous equations for the polar and/or nematic order parameters describing the large scale behavior of assemblies of point-like active particles interacting through polar or nematic alignment rules. Our study encompasses three main classes of dry active systems, namely polar particles with 'ferromagnetic' alignment (like the original Vicsek model), nematic particles with nematic alignment ("active nematics"), and polar particles with nematic alignment ("self-propelled rods"). The Boltzmann-Ginzburg-Landau approach combines a low-density description in the form of a Boltzmann equation, with a Ginzburg-Landau-type expansion close to the instability threshold of the disordered state. We provide the generic form of the continuous equations obtained for each class, and comment on the relationships and differences with other approaches.Comment: 30 pages, 3 figures, to appear in Eur. Phys. J. Special Topics, in a Discussion and Debate issue on active matte

    Interaction of atoms with twisted light

    Get PDF
    Twisted photons are particles which carry a nonzero projection of the orbital angular momentum onto their propagation direction. During the last years, the interaction between twisted photons and atoms became an active area of fundamental and applied research. In the present work, we show how the twistedness of Bessel and Laguerre-Gauss photons may affect a number of fundamental light-matter interaction processes in comparison with the results for standard plane-wave radiation. In particular, we perform an analysis of the photoionization of hydrogen molecular ions by twisted photons. It is shown that the oscillations in the angular and energy distributions of photoelectrons are affected by the intensity profile of twisted photons. We also investigate the excitation of atoms by these twisted photons. We demonstrate here that the orbital angular momentum of light leads to the alignment or specific magnetic sublevel population of excited atoms. Apart from these studies, we explore the elastic Rayleigh scattering of twisted photons by hydrogenlike ions. Our results indicate that the twistedness of incident photons may significantly influence the polarization properties of scattered light

    Large-scale chaos and fluctuations in active nematics

    Get PDF
    We show that "dry" active nematics, e.g. collections of shaken elongated granular particles, exhibit large-scale spatiotemporal chaos made of interacting dense, ordered, band-like structures in a parameter region including the linear onset of nematic order. These results are obtained from the study of the relatively simple and well-known (deterministic) hydrodynamic equations describing these systems in a dilute limit, and of a self-propelled particle Vicsek-like model for this class of active matter. In this last case, revisiting the status of the strong fluctuations and long-range correlations now considered as landmarks of orientationally-ordered active phases, we show that the giant number fluctuations observed in the chaotic phase are a trivial consequence of density segregation. However anomalous density fluctuations are present in the homogeneous quasi-ordered nematic phase and characterized by a non-trivial scaling exponent

    Continuous theory of active matter systems with metric-free interactions

    Full text link
    We derive a hydrodynamic description of metric-free active matter: starting from self-propelled particles aligning with neighbors defined by "topological" rules, not metric zones, -a situation advocated recently to be relevant for bird flocks, fish schools, and crowds- we use a kinetic approach to obtain well-controlled nonlinear field equations. We show that the density-independent collision rate per particle characteristic of topological interactions suppresses the linear instability of the homogeneous ordered phase and the nonlinear density segregation generically present near threshold in metric models, in agreement with microscopic simulations.Comment: Submitted to Physical Review Letter

    Effects of interparticle friction on the response of 3D cyclically compressed granular material

    Full text link
    We numerically study the effect of inter-particle friction coefficient on the response to cyclical pure shear of spherical particles in three dimensions. We focus on the rotations and translations of grains and look at the spatial distribution of these displacements as well as their probability distribution functions. We find that with increasing friction, the shear band becomes thinner and more pronounced. At low friction, the amplitude of particle rotations is homogeneously distributed in the system and is therefore mostly independent from both the affine and non-affine particle translations. In contrast, at high friction, the rotations are strongly localized in the shear zone. This work shows the importance of studying the effects of inter-particle friction on the response of granular materials to cyclic forcing, both for a better understanding of how rotations correlate to translations in sheared granular systems, and due to the relevance of cyclic forcing for most real-world applications in planetary science and industry

    Emergent spatial structures in flocking models: a dynamical system insight

    Get PDF
    We show that hydrodynamic theories of polar active matter generically possess inhomogeneous traveling solutions. We introduce a unifying dynamical-system framework to establish the shape of these intrinsically nonlinear patterns, and show that they correspond to those hitherto observed in experiments and numerical simulations: periodic density waves, and solitonic bands, or polar-liquid droplets both cruising in isotropic phases. We elucidate their respective multiplicity and mutual relations, as well as their existence domain
    corecore