160 research outputs found

    Information content and aerosol property retrieval potential for different types of in situ polar nephelometer data

    Get PDF
    Polar nephelometers are in situ instruments used to measure the angular distribution of light scattered by aerosol particles. These types of measurements contain substantial information about the properties of the aerosol being probed (e.g. concentrations, sizes, refractive indices, shape parameters), which can be retrieved through inversion algorithms. The aerosol property retrieval potential (i.e. information content) of a given set of measurements depends on the spectral, polarimetric, and angular characteristics of the polar nephelometer that was used to acquire the measurements. To explore this issue quantitatively, we applied Bayesian information content analysis and calculated the metric degrees of freedom for signal (DOFS) for a range of simulated polar nephelometer instrument configurations, aerosol models and test cases, and assumed levels of prior knowledge about the variances of specific aerosol properties. Assuming a low level of prior knowledge consistent with an unconstrained ambient/field measurement setting, we demonstrate that even very basic polar nephelometers (single wavelength, no polarization capability) will provide informative measurements with a very high retrieval potential for the size distribution and refractive index state parameters describing simple unimodal, spherical test aerosols. As expected, assuming a higher level of prior knowledge consistent with well-constrained laboratory applications leads to a reduction in potential for information gain via performing the polarimetric measurement. Nevertheless, we show that in this situation polar nephelometers can still provide informative measurements: e.g. it can be possible to retrieve the imaginary part of the refractive index with high accuracy if the laboratory setting makes it possible to keep the probed aerosol sample simple. The analysis based on a high level of prior knowledge also allows us to better assess the impact of different polar nephelometer instrument design features in a consistent manner for retrieved aerosol parameters. The results indicate that the addition of multi-wavelength and/or polarimetric measurement capabilities always leads to an increase in information content, although in some cases the increase is negligible, e.g. when adding a fourth, near-IR measurement wavelength for the retrieval of unimodal size distribution parameters or if the added polarization component has high measurement uncertainty. By considering a more complex bimodal, non-spherical-aerosol model, we demonstrate that performing more comprehensive spectral and/or polarimetric measurements leads to very large benefits in terms of the achieved information content. We also investigated the impact of angular truncation (i.e. the loss of measurement information at certain scattering angles) on information content. Truncation at extreme angles (i.e. in the near-forward or near-backward directions) results in substantial decreases in information content for coarse-aerosol test cases. However for fine-aerosol test cases, the sensitivity of DOFS to extreme-angle truncation is noticeably smaller and can be further reduced by performing more comprehensive measurements. Side angle truncation has very little effect on information content for both the fine and coarse test cases. Furthermore, we demonstrate that increasing the number of angular measurements generally increases the information content. However, above a certain number of angular measurements (∌20–40) the observed increases in DOFS plateau out. Finally, we demonstrate that the specific placement of angular measurements within a nephelometer can have a large impact on information content. As a proof of concept, we show that a reductive greedy algorithm based on the DOFS metric can be used to find optimal angular configurations for given target aerosols and applications.</p

    Information content and aerosol property retrieval potential for different types of in situ polar nephelometer data

    Get PDF
    Polar nephelometers are in situ instruments used to measure the angular distribution of light scattered by aerosol particles. These type of measurements contain substantial information about the properties of the aerosol being probed (e.g. concentrations, sizes, refractive indices, shape parameters), which can be retrieved through inversion algorithms. The aerosol property retrieval potential (i.e., information content) of a given set of measurements depends on the spectral, polarimetric and angular characteristics of the polar nephelometer that was used to acquire it. To explore this issue quantitatively, we applied Bayesian information content analysis and calculated the metric Degrees of Freedom for Signal (DOFS) for a range of simulated polar nephelometer instrument configurations, aerosol models and test cases, and assumed levels of prior knowledge about the variances of specific aerosol properties. Assuming a low level of prior knowledge consistent with an unconstrained ambient/field measurement setting, we demonstrate that even very basic polar nephelometers (single wavelength, no polarization capability) will provide informative measurements with very high retrieval potential for the size distribution and refractive index state parameters describing simple unimodal, spherical test aerosols. As expected, assuming a higher level of prior knowledge consistent with well constrained laboratory applications leads to a reduction in potential for information gain via performing the polarimetric measurement. This analysis allows us to better assess the impact of different polar nephelometer instrument design features in a consistent manner for retrieved aerosol parameters. The results indicate that the addition of multi-wavelength and/or polarimetric measurement capabilities always leads to an increase in information content, although in some cases the increase is negligible: e.g. when adding a fourth, near-IR measurement wavelength for the retrieval of unimodal size distribution parameters, or if the added polarization component has high measurement uncertainty. By considering a more complex bimodal, non-spherical aerosol model, we demonstrate that performing the more comprehensive spectral and/or polarimetric measurements leads to very large benefits in terms of the achieved information content. We also investigated the impact of angular truncation (i.e., the loss of measurement information at certain scattering angles) on information content. Truncation at extreme angles (i.e., in the near-forward or &ndash;backward directions) results in substantial decreases in information content for coarse aerosol test cases. However for fine aerosol test cases, the sensitivity of DOFS to extreme angle truncation is noticeably smaller and can be further reduced by performing more comprehensive measurements. Side-angle truncation has very little effect on information content for both the fine and coarse test cases. Furthermore, we demonstrate that increasing the number of angular measurements generally increases the information content. However, above a certain number of angular measurements (~20&ndash;40) the observed increases in DOFS plateau out. Finally, we demonstrate that the specific placement of angular measurements within a nephelometer can have a large impact on information content. As a proof-of-concept, we show that a reductive greedy algorithm based on the DOFS metric can be used to find optimal angular configurations for given target aerosols and applications.</p

    Properties of aerosol and surface derived from OLCI/Sentinel-3A using GRASP approach: Retrieval development and preliminary validation

    Get PDF
    The Ocean and Land Color Instrument (OLCI) onboard the Copernicus Sentinel-3A satellite is a medium-resolution and multi-spectral push-broom imager acquiring radiance in 21 spectral bands covering from the visible to the far near-infrared. These measurements are primary dedicated to land & ocean color applications, but actually include also reliable information for atmospheric aerosol and surface brightness characterization. In the framework of the EUMETSAT funded study to support the Copernicus Program, we describe the retrieval of aerosol and surface properties from OLCI single-viewing multi-spectral Top-Of-Atmosphere (TOA) radiances based on the Generalized Retrieval of Atmosphere and Surface Properties (GRASP) algorithm. The high potential of the OLCI/GRASP configuration stems from the attempt to retrieve both aerosol load and surface reflectance simultaneously using a globally consistent high-level approach. For example, both over land and ocean surfaces OLCI/GRASP uses 9 spectral channels (albeit with different weights), strictly the same prescribed aerosol models and globally the same a priori constraints (though with some differences for observations over land and ocean). Due to the lack of angular multi-viewing information, the directional properties of underlying surface are strongly constrained in the retrieval: over ocean the Fresnel reflection together with foam/whitecap albedo are exclusively computed using a priori wind speed; over land, the Bidirectional Reflectance Distribution Function (BRDF) is slightly adjusted from a priori values of climatological Ross-Li volumetric and geometric terms. Meanwhile, the isotropic reflectance is retrieved globally under mild spectral smoothness constraints. It should be noticed that OLCI/GRASP configuration employs innovative multi-pixel concept (Dubovik et al., 2011) that enhance retrieval by simultaneously inverting large group of pixels. The concept allows for benefiting from knowledge about natural variability of the retrieved parameters. The obtained OLCI/GRASP products were validated with the Aerosol Robotic Network (AERONET) and Maritime Aerosol Network (MAN) and intercompared with the Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and surface products. The overall performance is quite comparable to the community-referenced MODIS. Over ocean the OLCI/GRASP results are encouraging with 67% of the AOD (550 nm) satisfying the Global Climate Observing System (GCOS) requirement using AERONET coastal sites and 74% using MAN deep ocean measurements, and an AOD (550 nm) bias 0.01 with AERONET and nearly zero bias with MAN. Over land, 48% of OLCI/GRASP AOD (550 nm) satisfy the GCOS requirement and a bias within ±0.01 for total and AOD < 0.2. Key challenges are identified and discussed: adequate screening of cloud contaminations, retrieval of aerosol over bright surfaces and in the regions containing complex mixtures of aerosol

    Estimates of remote sensing retrieval errors by the GRASP algorithm: application to ground-based observations, concept and validation

    Get PDF
    Understanding the uncertainties in the retrieval of aerosol and surface properties is very important for an adequate characterization of the processes that occur in the atmosphere. However, the reliable characterization of the error budget of the retrieval products is a very challenging aspect that currently remains not fully resolved in most remote sensing approaches. The level of uncertainties for the majority of the remote sensing products relies mostly on post-processing validations and intercomparisons with other data, while the dynamic errors are rarely provided. Therefore, implementations of fundamental approaches for generating dynamic retrieval errors and the evaluation of their practical efficiency remains of high importance. This study describes and analyses the dynamic estimates of uncertainties in aerosol-retrieved properties by the GRASP (Generalized Retrieval of Atmosphere and Surface Properties) algorithm. The GRASP inversion algorithm, described by Dubovik et al. (2011, 2014, 2021), is designed based on the concept of statistical optimization and provides dynamic error estimates for all retrieved aerosol and surface properties. The approach takes into account the effect of both random and systematic uncertainties propagations. The algorithm provides error estimates both for directly retrieved parameters included in the retrieval state vector and for the characteristics derived from these parameters. For example, in the case of the aerosol properties, GRASP directly retrieves the size distribution and the refractive index that are used afterwards to provide phase function, scattering, extinction, single scattering albedo, etc. Moreover, the GRASP algorithm provides full covariance matrices, i.e. not only variances of the retrieval errors but also correlations coefficients of these errors. The analysis of the correlation matrix structure can be very useful for identifying less than obvious retrieval tendencies. This appears to be a useful approach for optimizing observation schemes and retrieval set-ups. In this study, we analyse the efficiency of the GRASP error estimation approach for applications to ground-based observations by a sun/sky photometer and lidar. Specifically, diverse aspects of the error generations and their evaluations are discussed and illustrated. The studies rely on a series of comprehensive sensitivity tests when simulated sun/sky photometer measurements and lidar data are perturbed by random and systematic errors and inverted. Then, the results of the retrievals and their error estimations are analysed and evaluated. The tests are conducted for different observations of diverse aerosol types, including biomass burning, urban, dust and their mixtures. The study considers observations of AErosol RObotic NETwork (AERONET) sun/sky photometer measurements at 440, 675, 870 and 1020 nm and multiwavelength elastic lidar measurements at 355, 532 and 1064 nm. The sun/sky photometer data are inverted alone or together with lidar data. The analysis shows overall successful retrievals and error estimations for different aerosol characteristics, including aerosol size distribution, complex refractive index, single scattering albedo, lidar ratios, aerosol vertical profiles, etc. Also, the main observed tendencies in the error dynamic agree with known retrieval experience. For example, the main accuracy limitations for retrievals of all aerosol types relate to the situations with low optical depth. Also, in situations with multicomponent aerosol mixtures, the reliable characterization of each component is possible only in limited situations, for example, from radiometric data obtained for low solar zenith angle observations or from a combination of radiometric and lidar data. At the same time, the total optical properties of aerosol mixtures are always retrieved satisfactorily. In addition, the study includes an analysis of the detailed structure of the correlation matrices for the retrieval errors in mono- and multicomponent aerosols. The conducted analysis of error correlation appears to be a useful approach for optimizing observation schemes and retrieval set-ups. The application of the approach to real data is provided.</p

    Different strategies to retrieve aerosol properties at night-time with the GRASP algorithm

    Get PDF
    This study evaluates the potential of the GRASP algorithm (Generalized Retrieval of Aerosol and Surface Properties) to retrieve continuous day-to-night aerosol properties, both column-integrated and vertically resolved. The study is focused on the evaluation of GRASP retrievals during an intense Saharan dust event that occurred during the Sierra Nevada Lidar aerOsol Profiling Experiment I (SLOPE I) field campaign. For daytime aerosol retrievals, we combined the measurements of the ground-based lidar from EARLINET (European Aerosol Research Lidar Network) station and sun–sky photometer from AERONET (Aerosol Robotic Network), both instruments co-located in Granada (Spain). However, for night-time retrievals three different combinations of active and passive remote-sensing measurements are proposed. The first scheme (N0) uses lidar night-time measurements in combination with the interpolation of sun–sky daytime measurements. The other two schemes combine lidar night-time measurements with nighttime aerosol optical depth obtained by lunar photometry either using intensive properties of the aerosol retrieved during sun–sky daytime measurements (N1) or using the Moon aureole radiance obtained by sky camera images (N2).This research has been supported by the European Union through the H2020 programme (ACTRIS-2, grant no. 654109) and the Spanish Ministry of Economy and Competitiveness (projects CMT2015-66742-R, CGL2016-81092- R, CGL2017-85344-R, RTI2018-097864-B-I00 and CGL2017- 90884-REDT)

    Photoproduction of pi0 omega off protons for E(gamma) < 3 GeV

    Full text link
    Differential and total cross-sections for photoproduction of gamma proton to proton pi0 omega and gamma proton to Delta+ omega were determined from measurements of the CB-ELSA experiment, performed at the electron accelerator ELSA in Bonn. The measurements covered the photon energy range from the production threshold up to 3GeV.Comment: 8 pages, 13 figure

    In-medium ω\omega mass from the Îł+Nb→π0Îł+X\gamma + Nb \to \pi^{0}\gamma + X reaction

    Full text link
    Data on the photoproduction of ω\omega mesons on nuclei have been re-analyzed in a search for in-medium modifications. The data were taken with the Crystal Barrel(CB)/TAPS detector system at the ELSA accelerator facility in Bonn. First results from the analysis of the data set were published by D. Trnka et al. in Phys. Rev. Lett 94 (2005) 192303 \cite{david}, claiming a lowering of the ω\omega mass in the nuclear medium by 14% at normal nuclear matter density. The extracted ω\omega line shape was found to be sensitive to the background subtraction. For this reason a re-analysis of the same data set has been initiated and a new method has been developed to reduce the background and to determine the shape and absolute magnitude of the background directly from the data. Details of the re-analysis and of the background determination are described. The ω\omega signal on the NbNb target, extracted in the re-analysis, does not show a deviation from the corresponding line shape on a LH2LH_2 target, measured as reference. The earlier claim of an in-medium mass shift is thus not confirmed. The sensitivity of the ω\omega line shape to different in-medium modification scenarios is discussed.Comment: 13 pages and 11 figures, submitted for publicatio

    Modification of the ω\omega-Meson Lifetime in Nuclear Matter

    Full text link
    The photo production of ω\omega mesons on the nuclei C, Ca, Nb and Pb has been measured using the Crystal Barrel/TAPS detector at the ELSA tagged photon facility in Bonn. The dependence of the ω\omega meson cross section on the nuclear mass number has been compared with three different types of models, a Glauber analysis, a BUU analysis of the Giessen theory group and a calculation by the Valencia theory group. In all three cases, the inelastic ω\omega width is found to be 130−150MeV/c2130-150 \rm{MeV/c^2} at normal nuclear matter density for an average 3-momentum of 1.1 GeV/c. In the restframe of the ω\omega meson, this inelastic ω\omega width corresponds to a reduction of the ω\omega lifetime by a factor ≈30\approx 30. For the first time, the momentum dependent ω\omegaN cross section has been extracted from the experiment and is in the range of 70 mb.Comment: 5 pages, 4 figure

    Aerosol absorption profiling from the synergy of lidar and sun-photometry : The ACTRIS-2 campaigns in Germany, Greece and Cyprus

    Get PDF
    © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).Aerosol absorption profiling is crucial for radiative transfer calculations and climate modelling. Here, we utilize the synergy of lidar with sun-photometer measurements to derive the absorption coefficient and single scattering albedo profiles during the ACTRIS-2 campaigns held in Germany, Greece and Cyprus. The remote sensing techniques are compared with in situ measurements in order to harmonize and validate the different methodologies and reduce the absorption profiling uncertainties.Peer reviewe
    • 

    corecore