29 research outputs found

    Couplage entre introduction et réparation des cassures double brin pendant les réarrangements programmés du génome de Paramecium tetraurelia

    Get PDF
    L Ă©limination programmĂ©e d ADN spĂ©cifique de la lignĂ©e germinale pour former un nouveau noyau somatique a Ă©tĂ© dĂ©crite chez les eucaryotes. Ces rĂ©arrangements sont initiĂ©s par l introduction de cassures double brin (CDB) de l ADN et la prĂ©servation de l intĂ©gritĂ© du gĂ©nome requiert une rĂ©paration efficace. Chez Paramecium tetraurelia, le gĂ©nome est largement rĂ©arrangĂ© pendant le dĂ©veloppement du nouveau noyau somatique, aprĂšs l introduction de milliers de cassures double brin programmĂ©es par la transposase domestiquĂ©e PiggyMac (Pgm)Ces rĂ©arrangements consistent en l excision prĂ©cise de dizaines de milliers de sĂ©quences uniques et non codantes (IES) qui interrompent 47% des gĂšnes dans la lignĂ©e germinale ; et l Ă©limination hĂ©tĂ©rogĂšne de sĂ©quences rĂ©pĂ©tĂ©es qui mĂšne Ă  des dĂ©lĂ©tions internes de taille variable ou Ă  la fragmentation des chromosomes avec addition de tĂ©lomĂšres aux extrĂ©mitĂ©s.L implication de la voie du Non Homologous End Joining (NHEJ) dans l excision prĂ©cise des IES a Ă©tĂ© prouvĂ©e. Dans des cellules dĂ©plĂ©tĂ©es de Ligase IV ou XRCC4, les cassures aux bornes des IES sont introduites normalement mais il n y a pas de jonctions d excision formĂ©es et les extrĂ©mitĂ©s cassĂ©es s accumulent sans ĂȘtre dĂ©gradĂ©es. Mais la voie de rĂ©paration impliquĂ©e dans les rĂ©arrangements imprĂ©cis est encore inconnue. L hypothĂšse d une rĂ©paration par la voie NHEJ alternative (alt-NHEJ), indĂ©pendante de Ku et impliquant la rĂ©section des extrĂ©mitĂ©s et l utilisation de microhomologie, a Ă©tĂ© Ă©mise. C est pourquoi pendant ma thĂšse je me suis intĂ©ressĂ© Ă  ma thĂšse au rĂŽle des protĂ©ines Ku.Deux gĂšnes KU70 et trois gĂšnes KU80 ont Ă©tĂ© identifiĂ©s dans le gĂ©nome de la paramĂ©cie. KU70a et KU80c sont spĂ©cifiquement induits pendant les rĂ©arrangements programmĂ©s du gĂ©nome et les protĂ©ines localisent dans les noyaux somatiques en dĂ©veloppement. Des expĂ©riences d extinction de ces gĂšnes par ARN interfĂ©rence ont prouvĂ© que ces gĂšnes Ă©taient indispensables. Au niveau molĂ©culaire, l ADN non rĂ©arrangĂ© est amplifiĂ© dans les cellules dĂ©plĂ©tĂ©es de Ku. De plus, les cassures double brin programmĂ©es ne sont pas introduites aux bornes des IES.Mes rĂ©sultats suggĂšrent que Ku fait partie d un complexe de prĂ©-excision, avec la transposase domestiquĂ©e Pgm, et est nĂ©cessaire pour l introduction des cassures double brin programmĂ©es pendant les rĂ©arrangements programmĂ©s du gĂ©nome.Programmed elimination of germline specific DNA has been described in several eukaryotic organisms. These rearrangements are initiated through introduction of DNA double strand breaks (DSB). To ensure genome integrity, efficient repair is needed. In Paramecium tetraurelia, the genome is widely rearranged during development of a new somatic nucleus after introduction of tens of thousands of DSBs by the domesticated transposase PiggyMac (Pgm)These rearrangements consist in: the precise excision of thousands of unique and non coding sequences called IESs that interrupt 47% of genes in the germline; and the heterogeneous elimination of repeated sequences. It leads to internal deletions of variable sizes or to chromosome fragmentation with telomere addition at DNA ends.Implication of the Non Homologous End Joining Pathway (NHEJ) in precise IES excision has been proved. In cells depleted for Ligase IV or XRCC4, DSBs at IES boundaries are introduced normally but broken DNA ends accumulate without being repaired nor degraded. The repair pathway implicated in heterogeneous rearrangements is still unknown. An hypothesis would be that heterogeneous rearrangements involve a Ku independent alternative NHEJ (alt-NHEJ) pathway characterized by end resection and use of microhomologies. During my thesis I studied the role of Ku proteins in programmed genome rearrangements.Two KU70 genes and three KU80 genes has been identified in the Paramecium genome. KU70a and KU80c are specifically induced during programmed genome rearrangements. Encoded proteins localize in developing somatic nuclei. Gene extinction by RNA interference experiments proved that these genes are necessary for programmed genome rearrangements. At molecular level, non rearranged DNA is amplified in cells depleted for Ku. And more surprisingly, no programmed DSBs are introduced at IES boundaries in these cells.My results indicate that Ku is a part of a pre excision complex with the domesticated transposase Pgm and necessary for the introduction of programmed DSB during programmed genome rearrangements.PARIS11-SCD-Bib. Ă©lectronique (914719901) / SudocSudocFranceF

    Highly Precise and Developmentally Programmed Genome Assembly in Paramecium Requires Ligase IV–Dependent End Joining

    Get PDF
    During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs), each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs), which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5â€Č overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ), are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi–mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5â€Č-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3â€Č ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a “cut-and-close” mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new mechanisms involved in genome dynamics

    Couplage entre introduction et réparation des cassures double brin pendant les réarrangements programmés du génome de Paramecium tetraurelia

    No full text
    Programmed elimination of germline specific DNA has been described in several eukaryotic organisms. These rearrangements are initiated through introduction of DNA double strand breaks (DSB). To ensure genome integrity, efficient repair is needed. In Paramecium tetraurelia, the genome is widely rearranged during development of a new somatic nucleus after introduction of tens of thousands of DSBs by the domesticated transposase PiggyMac (Pgm)These rearrangements consist in: the precise excision of thousands of unique and non coding sequences called IESs that interrupt 47% of genes in the germline; and the heterogeneous elimination of repeated sequences. It leads to internal deletions of variable sizes or to chromosome fragmentation with telomere addition at DNA ends.Implication of the Non Homologous End Joining Pathway (NHEJ) in precise IES excision has been proved. In cells depleted for Ligase IV or XRCC4, DSBs at IES boundaries are introduced normally but broken DNA ends accumulate without being repaired nor degraded. The repair pathway implicated in heterogeneous rearrangements is still unknown. An hypothesis would be that heterogeneous rearrangements involve a Ku independent alternative NHEJ (alt-NHEJ) pathway characterized by end resection and use of microhomologies. During my thesis I studied the role of Ku proteins in programmed genome rearrangements.Two KU70 genes and three KU80 genes has been identified in the Paramecium genome. KU70a and KU80c are specifically induced during programmed genome rearrangements. Encoded proteins localize in developing somatic nuclei. Gene extinction by RNA interference experiments proved that these genes are necessary for programmed genome rearrangements. At molecular level, non rearranged DNA is amplified in cells depleted for Ku. And more surprisingly, no programmed DSBs are introduced at IES boundaries in these cells.My results indicate that Ku is a part of a pre excision complex with the domesticated transposase Pgm and necessary for the introduction of programmed DSB during programmed genome rearrangements.L’élimination programmĂ©e d’ADN spĂ©cifique de la lignĂ©e germinale pour former un nouveau noyau somatique a Ă©tĂ© dĂ©crite chez les eucaryotes. Ces rĂ©arrangements sont initiĂ©s par l’introduction de cassures double brin (CDB) de l’ADN et la prĂ©servation de l’intĂ©gritĂ© du gĂ©nome requiert une rĂ©paration efficace. Chez Paramecium tetraurelia, le gĂ©nome est largement rĂ©arrangĂ© pendant le dĂ©veloppement du nouveau noyau somatique, aprĂšs l’introduction de milliers de cassures double brin programmĂ©es par la transposase domestiquĂ©e PiggyMac (Pgm)Ces rĂ©arrangements consistent en l’excision prĂ©cise de dizaines de milliers de sĂ©quences uniques et non codantes (IES) qui interrompent 47% des gĂšnes dans la lignĂ©e germinale ; et l’élimination hĂ©tĂ©rogĂšne de sĂ©quences rĂ©pĂ©tĂ©es qui mĂšne Ă  des dĂ©lĂ©tions internes de taille variable ou Ă  la fragmentation des chromosomes avec addition de tĂ©lomĂšres aux extrĂ©mitĂ©s.L’implication de la voie du Non Homologous End Joining (NHEJ) dans l’excision prĂ©cise des IES a Ă©tĂ© prouvĂ©e. Dans des cellules dĂ©plĂ©tĂ©es de Ligase IV ou XRCC4, les cassures aux bornes des IES sont introduites normalement mais il n’y a pas de jonctions d’excision formĂ©es et les extrĂ©mitĂ©s cassĂ©es s’accumulent sans ĂȘtre dĂ©gradĂ©es. Mais la voie de rĂ©paration impliquĂ©e dans les rĂ©arrangements imprĂ©cis est encore inconnue. L’hypothĂšse d’une rĂ©paration par la voie NHEJ alternative (alt-NHEJ), indĂ©pendante de Ku et impliquant la rĂ©section des extrĂ©mitĂ©s et l’utilisation de microhomologie, a Ă©tĂ© Ă©mise. C’est pourquoi pendant ma thĂšse je me suis intĂ©ressĂ© Ă  ma thĂšse au rĂŽle des protĂ©ines Ku.Deux gĂšnes KU70 et trois gĂšnes KU80 ont Ă©tĂ© identifiĂ©s dans le gĂ©nome de la paramĂ©cie. KU70a et KU80c sont spĂ©cifiquement induits pendant les rĂ©arrangements programmĂ©s du gĂ©nome et les protĂ©ines localisent dans les noyaux somatiques en dĂ©veloppement. Des expĂ©riences d’extinction de ces gĂšnes par ARN interfĂ©rence ont prouvĂ© que ces gĂšnes Ă©taient indispensables. Au niveau molĂ©culaire, l’ADN non rĂ©arrangĂ© est amplifiĂ© dans les cellules dĂ©plĂ©tĂ©es de Ku. De plus, les cassures double brin programmĂ©es ne sont pas introduites aux bornes des IES.Mes rĂ©sultats suggĂšrent que Ku fait partie d’un complexe de prĂ©-excision, avec la transposase domestiquĂ©e Pgm, et est nĂ©cessaire pour l’introduction des cassures double brin programmĂ©es pendant les rĂ©arrangements programmĂ©s du gĂ©nome

    Ku-mediated coupling of DSB introduction and repair during programmed genome rearrangements in Paramecium tetraurelia

    No full text
    L’élimination programmĂ©e d’ADN spĂ©cifique de la lignĂ©e germinale pour former un nouveau noyau somatique a Ă©tĂ© dĂ©crite chez les eucaryotes. Ces rĂ©arrangements sont initiĂ©s par l’introduction de cassures double brin (CDB) de l’ADN et la prĂ©servation de l’intĂ©gritĂ© du gĂ©nome requiert une rĂ©paration efficace. Chez Paramecium tetraurelia, le gĂ©nome est largement rĂ©arrangĂ© pendant le dĂ©veloppement du nouveau noyau somatique, aprĂšs l’introduction de milliers de cassures double brin programmĂ©es par la transposase domestiquĂ©e PiggyMac (Pgm)Ces rĂ©arrangements consistent en l’excision prĂ©cise de dizaines de milliers de sĂ©quences uniques et non codantes (IES) qui interrompent 47% des gĂšnes dans la lignĂ©e germinale ; et l’élimination hĂ©tĂ©rogĂšne de sĂ©quences rĂ©pĂ©tĂ©es qui mĂšne Ă  des dĂ©lĂ©tions internes de taille variable ou Ă  la fragmentation des chromosomes avec addition de tĂ©lomĂšres aux extrĂ©mitĂ©s.L’implication de la voie du Non Homologous End Joining (NHEJ) dans l’excision prĂ©cise des IES a Ă©tĂ© prouvĂ©e. Dans des cellules dĂ©plĂ©tĂ©es de Ligase IV ou XRCC4, les cassures aux bornes des IES sont introduites normalement mais il n’y a pas de jonctions d’excision formĂ©es et les extrĂ©mitĂ©s cassĂ©es s’accumulent sans ĂȘtre dĂ©gradĂ©es. Mais la voie de rĂ©paration impliquĂ©e dans les rĂ©arrangements imprĂ©cis est encore inconnue. L’hypothĂšse d’une rĂ©paration par la voie NHEJ alternative (alt-NHEJ), indĂ©pendante de Ku et impliquant la rĂ©section des extrĂ©mitĂ©s et l’utilisation de microhomologie, a Ă©tĂ© Ă©mise. C’est pourquoi pendant ma thĂšse je me suis intĂ©ressĂ© Ă  ma thĂšse au rĂŽle des protĂ©ines Ku.Deux gĂšnes KU70 et trois gĂšnes KU80 ont Ă©tĂ© identifiĂ©s dans le gĂ©nome de la paramĂ©cie. KU70a et KU80c sont spĂ©cifiquement induits pendant les rĂ©arrangements programmĂ©s du gĂ©nome et les protĂ©ines localisent dans les noyaux somatiques en dĂ©veloppement. Des expĂ©riences d’extinction de ces gĂšnes par ARN interfĂ©rence ont prouvĂ© que ces gĂšnes Ă©taient indispensables. Au niveau molĂ©culaire, l’ADN non rĂ©arrangĂ© est amplifiĂ© dans les cellules dĂ©plĂ©tĂ©es de Ku. De plus, les cassures double brin programmĂ©es ne sont pas introduites aux bornes des IES.Mes rĂ©sultats suggĂšrent que Ku fait partie d’un complexe de prĂ©-excision, avec la transposase domestiquĂ©e Pgm, et est nĂ©cessaire pour l’introduction des cassures double brin programmĂ©es pendant les rĂ©arrangements programmĂ©s du gĂ©nome.Programmed elimination of germline specific DNA has been described in several eukaryotic organisms. These rearrangements are initiated through introduction of DNA double strand breaks (DSB). To ensure genome integrity, efficient repair is needed. In Paramecium tetraurelia, the genome is widely rearranged during development of a new somatic nucleus after introduction of tens of thousands of DSBs by the domesticated transposase PiggyMac (Pgm)These rearrangements consist in: the precise excision of thousands of unique and non coding sequences called IESs that interrupt 47% of genes in the germline; and the heterogeneous elimination of repeated sequences. It leads to internal deletions of variable sizes or to chromosome fragmentation with telomere addition at DNA ends.Implication of the Non Homologous End Joining Pathway (NHEJ) in precise IES excision has been proved. In cells depleted for Ligase IV or XRCC4, DSBs at IES boundaries are introduced normally but broken DNA ends accumulate without being repaired nor degraded. The repair pathway implicated in heterogeneous rearrangements is still unknown. An hypothesis would be that heterogeneous rearrangements involve a Ku independent alternative NHEJ (alt-NHEJ) pathway characterized by end resection and use of microhomologies. During my thesis I studied the role of Ku proteins in programmed genome rearrangements.Two KU70 genes and three KU80 genes has been identified in the Paramecium genome. KU70a and KU80c are specifically induced during programmed genome rearrangements. Encoded proteins localize in developing somatic nuclei. Gene extinction by RNA interference experiments proved that these genes are necessary for programmed genome rearrangements. At molecular level, non rearranged DNA is amplified in cells depleted for Ku. And more surprisingly, no programmed DSBs are introduced at IES boundaries in these cells.My results indicate that Ku is a part of a pre excision complex with the domesticated transposase Pgm and necessary for the introduction of programmed DSB during programmed genome rearrangements

    Évaluation de l exposition au 2-phĂ©noxyĂ©thanol en aquaculture marine

    No full text
    LILLE2-BU Santé-Recherche (593502101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Transposon Invasion of the Paramecium Germline Genome Countered by a Domesticated PiggyBac Transposase and the NHEJ Pathway

    Get PDF
    Sequences related to transposons constitute a large fraction of extant genomes, but insertions within coding sequences have generally not been tolerated during evolution. Thanks to their unique nuclear dimorphism and to their original mechanism of programmed DNA elimination from their somatic nucleus (macronucleus), ciliates are emerging model organisms for the study of the impact of transposable elements on genomes. The germline genome of the ciliate Paramecium, located in its micronucleus, contains thousands of short intervening sequences, the IESs, which interrupt 47% of genes. Recent data provided support to the hypothesis that an evolutionary link exists between Paramecium IESs and Tc1/mariner transposons. During development of the macronucleus, IESs are excised precisely thanks to the coordinated action of PiggyMac, a domesticated piggyBac transposase, and of the NHEJ double-strand break repair pathway. A PiggyMac homolog is also required for developmentally programmed DNA elimination in another ciliate, Tetrahymena. Here, we present an overview of the life cycle of these unicellular eukaryotes and of the developmentally programmed genome rearrangements that take place at each sexual cycle. We discuss how ancient domestication of a piggyBac transposase might have allowed Tc1/mariner elements to spread throughout the germline genome of Paramecium, without strong counterselection against insertion within genes

    Ku-mediated coupling of DNA cleavage and repair during programmed genome rearrangements in the ciliate Paramecium tetraurelia.

    No full text
    During somatic differentiation, physiological DNA double-strand breaks (DSB) can drive programmed genome rearrangements (PGR), during which DSB repair pathways are mobilized to safeguard genome integrity. Because of their unique nuclear dimorphism, ciliates are powerful unicellular eukaryotic models to study the mechanisms involved in PGR. At each sexual cycle, the germline nucleus is transmitted to the progeny, but the somatic nucleus, essential for gene expression, is destroyed and a new somatic nucleus differentiates from a copy of the germline nucleus. In Paramecium tetraurelia, the development of the somatic nucleus involves massive PGR, including the precise elimination of at least 45,000 germline sequences (Internal Eliminated Sequences, IES). IES excision proceeds through a cut-and-close mechanism: a domesticated transposase, PiggyMac, is essential for DNA cleavage, and DSB repair at excision sites involves the Ligase IV, a specific component of the non-homologous end-joining (NHEJ) pathway. At the genome-wide level, a huge number of programmed DSBs must be repaired during this process to allow the assembly of functional somatic chromosomes. To understand how DNA cleavage and DSB repair are coordinated during PGR, we have focused on Ku, the earliest actor of NHEJ-mediated repair. Two Ku70 and three Ku80 paralogs are encoded in the genome of P. tetraurelia: Ku70a and Ku80c are produced during sexual processes and localize specifically in the developing new somatic nucleus. Using RNA interference, we show that the development-specific Ku70/Ku80c heterodimer is essential for the recovery of a functional somatic nucleus. Strikingly, at the molecular level, PiggyMac-dependent DNA cleavage is abolished at IES boundaries in cells depleted for Ku80c, resulting in IES retention in the somatic genome. PiggyMac and Ku70a/Ku80c co-purify as a complex when overproduced in a heterologous system. We conclude that Ku has been integrated in the Paramecium DNA cleavage factory, enabling tight coupling between DSB introduction and repair during PGR

    Identification of a miniature Sae2/Ctp1/CtIP ortholog from Paramecium tetraurelia required for sexual reproduction and DNA double-strand break repair

    Full text link
    DNA double-strand breaks (DSBs) induced by genotoxic agents can cause cell death or contribute to chromosomal instability, a major driving force of cancer. By contrast, Spo11-dependent DSBs formed during meiosis are aimed at generating genetic diversity. In eukaryotes, CtIP and the Mre11 nuclease complex are essential for accurate processing and repair of both unscheduled and programmed DSBs by homologous recombination (HR). Here, we applied bioinformatics and genetic analysis to identify Paramecium tetraurelia CtIP (PtCtIP), the smallest known Sae2/Ctp1/CtIP ortholog, as a key factor for the completion of meiosis and the recovery of viable sexual progeny. Using in vitro assays, we find that purified recombinant PtCtIP preferentially binds to double-stranded DNA substrates but does not contain intrinsic nuclease activity. Moreover, mutation of the evolutionarily conserved C-terminal 'RHR' motif abrogates DNA binding of PtCtIP but not its ability to functionally interact with Mre11. Translating our findings into mammalian cells, we provide evidence that disruption of the 'RHR' motif abrogates accumulation of human CtIP at sites of DSBs. Consequently, cells expressing the DNA binding mutant CtIP are defective in DSB resection and HR. Collectively, our work highlights minimal structural requirements for CtIP protein family members to facilitate the processing of DSBs, thereby maintaining genome stability as well as enabling sexual reproduction

    Models for the assembly of an active DNA cleavage complex.

    No full text
    <p>(A) Ku associates with DNA-bound Pgm and activates DNA cleavage. Pgm and its putative partners (in grey) would recognize and bind the boundaries of eliminated sequences. The binding of Ku (in blue) activates Pgm for DNA cleavage (symbolized by the switch from a rectangular box to an oval), perhaps by assisting the formation of a synapse between both IES ends, in a transpososome-like intermediate. The DNA-PKcs catalytic subunit (in peach) may also be part of the active DNA cleavage complex. (B) Ku forms a complex with Pgm in the absence of DNA, activating the DNA binding and/or cleavage activities of Pgm. Following DNA cleavage, conformational remodeling of the complex would position Ku on broken DNA ends and allow it to perform its classical role in C-NHEJ-mediated DSB repair. MAC DNA is represented in black, IES DNA in red.</p
    corecore