25 research outputs found

    Laser-induced damage threshold of nonlinear GaSe and GaSe:In crystals upon exposure to pulsed radiation at a wavelength of 2.1 μm

    Get PDF
    The paper defined the laser-induced damage threshold from the fluence and the peak power of GaSe and GaSe:In single crystals upon exposure to nanosecond radiation in the two micron range and assessed the influence of test radiation energy parameters (pulse repetition rate, pulse duration) on the damage threshold. Laser-induced damage threshold was determined with the parameters of the incident radiation close to the pump radiation parameters of promising dual-wavelength optical parametric oscillators (effective pump sources for THz difference frequency oscillators): wavelength was ≈ 2.1 μm; pulse repetition rates were 10, 12, 14, and 20 kHz; and pulse durations were 15, 18, 20, and 22 ns. The obtained results made it possible to conclude that the value of GaSe damage threshold at a wavelength of 2.091 μm of the incident radiation was influenced by the accumulation effects (the damage threshold decreased as the pulse repetition rate increased). The accumulation effects were more significant in the case of the In-doped sample, since a more significant decrease in the damage threshold was observed with increasing frequency in terms of the peak power and the fluence

    The ATLAS inner detector trigger performance in pp collisions at 13 TeV during LHC Run 2

    Get PDF
    The design and performance of the inner detector trigger for the high level trigger of the ATLAS experiment at the Large Hadron Collider during the 2016-18 data taking period is discussed. In 2016, 2017, and 2018 the ATLAS detector recorded 35.6 fb1^{-1}, 46.9 fb1^{-1}, and 60.6 fb1^{-1} respectively of proton-proton collision data at a centre-of-mass energy of 13 TeV. In order to deal with the very high interaction multiplicities per bunch crossing expected with the 13 TeV collisions the inner detector trigger was redesigned during the long shutdown of the Large Hadron Collider from 2013 until 2015. An overview of these developments is provided and the performance of the tracking in the trigger for the muon, electron, tau and bb-jet signatures is discussed. The high performance of the inner detector trigger with these extreme interaction multiplicities demonstrates how the inner detector tracking continues to lie at the heart of the trigger performance and is essential in enabling the ATLAS physics programme

    Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm

    Get PDF
    This work was funded by the Engineering and Physical Sciences Research Council.Femtosecond mode locking of a Tm-doped Lu2O3 ceramic laser is reported. Transform-limited pulses as short as 180 fs are generated at 2076 nm with an average output power of 400 mW and a pulse repetition frequency of 121.2 MHz. An output power up to 750 mW can be reached at the somewhat longer pulse duration of 382 fs. Femtosecond pulse generation is realized in the 2030-2100 nm spectral range. Passive mode locking was achieved using an ion-implanted InGaAsSb quantum-well-based SESAM.PostprintPeer reviewe
    corecore