111 research outputs found
The phosphodiesterase 5 inhibitor sildenafil decreases the proinflammatory chemokine IL-8 in diabetic cardiomyopathy: in vivo and in vitro evidence
Purpose: Interleukin (IL)-8 is a proinflammatory C-X-C chemokine involved in inflammation underling cardiac diseases, primary or in comorbid condition, such diabetic cardiomyopathy (DCM). The phosphodiesterase type 5 inhibitor sildenafil can ameliorate cardiac conditions by counteracting inflammation. The study aim is to evaluate the effect of sildenafil on serum IL-8 in DCM subjects vs. placebo, and on IL-8 release in human endothelial cells (Hfaec) and peripheral blood mononuclear cells (PBMC) under inflammatory stimuli. Methods: IL-8 was quantified: in sera of (30) DCM subjects before (baseline) and after sildenafil (100 mg/day, 3-months) vs. (16) placebo and (15) healthy subjects, by multiplatform array; in supernatants from inflammation-challenged cells after sildenafil (1 µM), by ELISA. Results: Baseline IL-8 was higher in DCM vs. healthy subjects (149.14 ± 46.89 vs. 16.17 ± 5.38 pg/ml, p < 0.01). Sildenafil, not placebo, significantly reduced serum IL-8 (23.7 ± 5.9 pg/ml, p < 0.05 vs. baseline). Receiver operating characteristic (ROC) curve for IL-8 was 0.945 (95% confidence interval of 0.772 to 1.0, p < 0.01), showing good capacity of discriminating the response in terms of drug-induced IL-8 decrease (sensitivity of 0.93, specificity of 0.90). Sildenafil significantly decreased IL-8 protein release by inflammation-induced Hfaec and PBMC and downregulated IL-8 mRNA in PBMC, without affecting cell number or PDE5 expression. Conclusion: Sildenafil might be suggested as potential novel pharmacological tool to control DCM progression through IL-8 targeting at systemic and cellular level
Testosterone insulin-like effects: an in vitro study on the short-term metabolic effects of testosterone in human skeletal muscle cells
Testosterone by promoting different metabolic pathways contributes to short-term homeostasis of skeletal muscle, the largest insulin-sensitive tissue and the primary site for insulin-stimulated glucose utilization. Despite evidences indicate a close relationship between testosterone and glucose metabolism, the molecular mechanisms responsible for a possible testosterone-mediated insulin-like effects on skeletal muscle are still unknown
Suppression of Pdx-1 perturbs proinsulin processing, insulin secretion and GLP-1 signalling in INS-1 cells
Aims/hypothesis: Mutations in genes encoding HNF-4α, HNF-1α and IPF-1/Pdx-1 are associated with, respectively, MODY subtypes-1, -3 and -4. Impaired glucose-stimulated insulin secretion is the common primary defect of these monogenic forms of diabetes. A regulatory circuit between these three transcription factors has also been suggested. We aimed to explore how Pdx-1 regulates beta cell function and gene expression patterns. Methods: We studied two previously established INS-1 stable cell lines permitting inducible expression of, respectively, Pdx-1 and its dominant-negative mutant. We used HPLC for insulin processing, adenovirally encoded aequorin for cytosolic [Ca2+], and transient transfection of human growth hormone or patch-clamp capacitance recordings to monitor exocytosis. Results: Induction of DN-Pdx-1 resulted in defective glucose-stimulated and K+-depolarisation-induced insulin secretion in INS-1 cells, while overexpression of Pdx-1 had no effect. We found that DN-Pdx-1 caused down-regulation of fibroblast growth factor receptor 1 (FGFR1), and consequently prohormone convertases (PC-1/3 and -2). As a result, DN-Pdx-1 severely impaired proinsulin processing. In addition, induction of Pdx-1 suppressed the expression of glucagon-like peptide 1 receptor (GLP-1R), which resulted in marked reduction of both basal and GLP-1 agonist exendin-4-stimulated cellular cAMP levels. Induction of DN-Pdx-1 did not affect glucokinase activity, glycolysis, mitochondrial metabolism or ATP generation. The K+-induced cytosolic [Ca2+] rise and Ca2+-evoked exocytosis (membrane capacitance) were not abrogated. Conclusions/interpretation: The severely impaired proinsulin processing combined with decreased GLP-1R expression and cellular cAMP content, rather than metabolic defects or altered exocytosis, may contribute to the beta cell dysfunction induced by Pdx-1 deficienc
Sulodexide counteracts endothelial dysfunction induced by metabolic or non-metabolic stresses through activation of the autophagic program
OBJECTIVE: Endothelial dysfunction (ED) predisposes to venous thrombosis (VT) and post-thrombotic syndrome (PTS), a long-term VT-related complication. Sulodexide (SDX) is a highly purified glycosaminoglycan with antithrombotic, pro-fibrinolytic and anti-inflammatory activity used in the treatment of chronic venous disease (CVD), including patients with PTS. SDX has recently obtained clinical evidence in the “extension therapy” after initial-standard anticoagulant treatment for the secondary prevention of recurrent deep vein thrombosis (DVT). Herein, we investigated how SDX counteracts ED. MATERIALS AND METHODS: Human umbilical vein endothelial cells (HUVEC) were used. Metabolic and non metabolic-induced ED was induced by treating with methylglyoxal (MGO) or irradiation (IR), respectively. Bafilomycin A1 was used to inhibit autophagy. The production of reactive oxygen species (ROS), tetrazolium bromide (MTT) assay for cell viability, terminal de-oxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay for cell apoptosis, Real-time PCR and Western blot analysis for gene and protein expression were used. RESULTS: SDX protected HUVEC from MGO- or IR-induced apoptosis by counteracting the activation of the intrinsic and extrinsic caspase cascades. The cytoprotective effects of SDX resulted from a reduction in a) ROS production, b) neo-synthesis and release of pro-inflammatory cytokines (TNFα, IL1, IL6, IL8), c) DNA damage induced by MGO or IR. These effects were reduced when autophagy was inhibited. CONCLUSIONS: Data herein collected indicate the ability of SDX to counteract ED induced by metabolic or non-metabolic stresses by involving the intracellular autophagy pathway. Our experience significantly increases the knowledge of the mechanisms of action of SDX against ED and supports the use of SDX in the treatment of CVD, PTS and in the secondary prevention of recurrent DVT
Sildenafil Reduces Expression and Release of IL-6 and IL-8 Induced by Reactive Oxygen Species in Systemic Sclerosis Fibroblasts
Oxidative stress linked to vascular damage plays an important role in the pathogenesis of systemic sclerosis (SSc). Indeed, vascular damage at nailfold capillaroscopy in patients with Raynaud’s Phenomenon (RP) is a major risk factor for the development of SSc together with the presence of specific autoantiobodies. Here, we investigated the effects of the phosphodiesterase type 5 inhibitor (PDE5i) sildenafil, currently used in the management of RP, in modulating the proinflammatory response of dermal fibroblasts to oxidative stress in vitro. Human fibroblasts isolated from SSc patients and healthy controls were exposed to exogenous reactive oxygen species (ROS) (100 µM H2O2), in the presence or absence of sildenafil (1 µM). Treatment with sildenafil significantly reduced dermal fibroblast gene expression and cellular release of IL-6, known to play a central role in the pathogenesis of tissue damage in SSc and IL-8, directly induced by ROS. This reduction was associated with suppression of STAT3-, ERK-, NF-κB-, and PKB/AKT-dependent pathways. Our findings support the notion that the employment of PDE5i in the management of RP may be explored for its efficacy in modulating the oxidative stress-induced proinflammatory activation of dermal fibroblasts in vivo and may ultimately aid in the prevention of tissue damage caused by SSc
Reduced proficiency in homologous recombination underlies the high sensitivity of embryonal carcinoma testicular germ cell tumors to Cisplatin and poly (adp-ribose) polymerase inhibition
Testicular Germ Cell Tumors (TGCT) and patient-derived cell lines are extremely sensitive to cisplatin and other interstrand cross-link (ICL) inducing agents. Nevertheless, a subset of TGCTs are either innately resistant or acquire resistance to cisplatin during treatment. Understanding the mechanisms underlying TGCT sensitivity/resistance to cisplatin as well as the identification of novel strategies to target cisplatin-resistant TGCTs have major clinical implications. Herein, we have examined the proficiency of five embryonal carcinoma (EC) cell lines to repair cisplatin-induced ICLs. Using ÎłH2AX staining as a marker of double strand break formation, we found that EC cell lines were either incapable of or had a reduced ability to repair ICL-induced damage. The defect correlated with reduced Homologous Recombination (HR) repair, as demonstrated by the reduction of RAD51 foci formation and by direct evaluation of HR efficiency using a GFP-reporter substrate. HR-defective tumors cells are known to be sensitive to the treatment with poly(ADP-ribose) polymerase (PARP) inhibitor. In line with this observation, we found that EC cell lines were also sensitive to PARP inhibitor monotherapy. The magnitude of sensitivity correlated with HR-repair reduced proficiency and with the expression levels and activity of PARP1 protein. In addition, we found that PARP inhibition strongly enhanced the response of the most resistant EC cells to cisplatin, by reducing their ability to overcome the damage. These results point to a reduced proficiency of HR repair as a source of sensitivity of ECs to ICL-inducing agents and PARP inhibitor monotherapy, and suggest that pharmacological inhibition of PARP can be exploited to target the stem cell component of the TGCTs (namely ECs) and to enhance the sensitivity of cisplatin-resistant TGCTs to standard treatments
Cigarette Smoking and Human Gut Microbiota in Healthy Adults: A Systematic Review
The intestinal microbiota is a crucial regulator of human health and disease because of its interactions with the immune system. Tobacco smoke also influences the human ecosystem with implications for disease development. This systematic review aims to analyze the available evidence, until June 2021, on the relationship between traditional and/or electronic cigarette smoking and intestinal microbiota in healthy human adults. Of the 2645 articles published in PubMed, Scopus, and Web of Science, 13 were included in the review. Despite differences in design, quality, and participants’ characteristics, most of the studies reported a reduction in bacterial species diversity, and decreased variability indices in smokers’ fecal samples. At the phylum or genus level, the results are very mixed on bacterial abundance both in smokers and non-smokers with two exceptions. Prevotella spp. appears significantly increased in smokers and former smokers but not in electronic cigarette users, while Proteobacteria showed a progressive increase in Desulfovibrio with the number of pack-years of cigarette (p = 0.001) and an increase in Alphaproteobacteria (p = 0.04) in current versus never smokers. This attempt to systematically characterize the effects of tobacco smoking on the composition of gut microbiota gives new perspectives on future research in smoking cessation and on a new possible use of probiotics to contrast smoke-related dysbiosis
Estrogen-receptor-positive breast cancer in postmenopausal women: The role of body composition and physical exercise
Breast cancer (BC) is the most commonly diagnosed cancer among women worldwide and the most common cause of cancer-related death. To date, it is still a challenge to estimate the magnitude of the clinical impact of physical activity (PA) on those parameters producing significative changes in future BC risk and disease progression. However, studies conducted in recent years highlight the role of PA not only as a protective factor for the development of ER+ breast cancer but, more generally, as a useful tool in the management of BC treatment as an adjuvant to traditional therapies. In this review, we focused our attention on data obtained from human studies analyzing, at each level of disease prevention (i.e., primary, secondary, tertiary and quaternary), the positive impact of PA/exercise in ER+ BC, a subtype representing approximately 70% of all BC diagnoses. Moreover, given the importance of estrogen receptors and body composition (i.e., adipose tissue) in this subtype of BC, an overview of their role will also be made throughout this review
- …