137 research outputs found

    ClassBench-ng: Benchmarking Packet Classification Algorithms in the OpenFlow Era

    Get PDF

    Lightweight Acquisition and Ranging of Flows in the Data Plane

    Get PDF
    As networks get more complex, the ability to track almost all the flows is becoming of paramount importance. This is because we can then detect transient events impacting only a subset of the traffic. Solutions for flow monitoring exist, but it is getting very difficult to produce accurate estimations for every tuple given the memory constraints of commodity programmable switches. Indeed, as networks grow in size, more flows have to be tracked, increasing the number of tuples to be recorded. At the same time, end-host virtualization requires more specific flowIDs, enlarging the memory cost for every single entry. Finally, the available memory resources have to be shared with other important functions as well (e.g., load balancing, forwarding, ACL). To address those issues, we present FlowLiDAR (Flow Lightweight Detection and Ranging), a new solution that is capable of tracking almost all the flows in the network while requiring only a modest amount of data plane memory which is not dependent on the size of flowIDs. We implemented the scheme in P4, tested it using real traffic from ISPs and compared it against four state-of-the-art solutions: FlowRadar, NZE, PR-sketch, and Elastic Sketch. While those can only reconstruct up to 60% of the tuples, FlowLiDAR can track 98.7% of them with the same amount of memory

    Direct Telemetry Access

    Get PDF
    Fine-grained network telemetry is becoming a modern datacenter standard and is the basis of essential applications such as congestion control, load balancing, and advanced troubleshooting. As network size increases and telemetry gets more fine-grained, there is a tremendous growth in the amount of data needed to be reported from switches to collectors to enable network-wide view. As a consequence, it is progressively hard to scale data collection systems.We introduce Direct Telemetry Access (DTA), a solution optimized for aggregating and moving hundreds of millions of reports per second from switches into queryable data structures in collectors' memory. DTA is lightweight and it is able to greatly reduce overheads at collectors. DTA is built on top of RDMA, and we propose novel and expressive reporting primitives to allow easy integration with existing state-of-the-art telemetry mechanisms such as INT or Marple.We show that DTA significantly improves telemetry collection rates. For example, when used with INT, it can collect and aggregate over 400M reports per second with a single server, improving over the Atomic MultiLog by up to 16x

    ClassBench-ng: Recasting ClassBench After a Decade of Network Evolution

    Get PDF
    Internet evolution is driven by a continuous stream of new applications and users driving the demand for services. To keep up with this, a never-stopping research has been transforming the Internet ecosystem over the time. Technological changes on both protocols (the uptake of IPv6) and network architectures (the adoption of Software Defined Networking) introduced new challenges for ASIC designers. In particular, IPv6 and OpenFlow increased the complexity of the rule matching problem, pushing researchers to build new packet classification algorithms capable to keep pace with a steady growth of link speed. A lot of research effort identifies better lookup techniques capitalizing on the characteristics of rule sets. So far, the availability of small numbers of real rule sets and synthetic ones, generated with tools such as ClassBench, has boosted research in the IPv4 world. Starting from an analysis of rule sets taken from operational environments, we present ClassBench-ng, a new open source tool for the generation of synthetic IPv4, IPv6, and OpenFlow 1.0 rule sets exposing the same properties of real ones. We feel this tool can meet the requirements of nowadays researchers, boosting the rule matching research as ClassBench has done since ten years ago

    Update on ACM SIGCOMM CCR reviewing process

    Get PDF
    This editorial note aims to first inform the SIGCOMM community on the reviewing process in place currently at CCR, and second, share our plans to make CCR a more open and welcoming venue by making changes to the review process, adding more value to the SIGCOMM community

    Characterizing HR3549B using SPHERE

    Get PDF
    Aims. In this work, we characterize the low mass companion of the A0 field star HR3549. Methods. We observed HR3549AB in imaging mode with the the NIR branch (IFS and IRDIS) of SPHERE@VLT, with IFS in YJ mode and IRDIS in the H band. We also acquired a medium resolution spectrum with the IRDIS long slit spectroscopy mode. The data were reduced using the dedicated SPHERE GTO pipeline, purposely designed for this instrument. We employed algorithms such as PCA and TLOCI to reduce the speckle noise. Results. The companion was clearly visible both with IRDIS and IFS.We obtained photometry in four different bands as well as the astrometric position for the companion. Based on our astrometry, we confirm that it is a bound object and put constraints on its orbit. Although several uncertainties are still present, we estimate an age of ~100-150 Myr for this system, yielding a most probable mass for the companion of 40-50MJup and T_eff ~300-2400 K. Comparing with template spectra points to a spectral type between M9 and L0 for the companion, commensurate with its position on the color-magnitude diagram.Comment: Accepted by A&A, 13 pages, 10 Figures (Figures 9 and 10 degraded to reduce the dimension

    Shadows and spirals in the protoplanetary disk HD 100453

    Get PDF
    Understanding the diversity of planets requires to study the morphology and the physical conditions in the protoplanetary disks in which they form. We observed and spatially resolved the disk around the ~10 Myr old protoplanetary disk HD 100453 in polarized scattered light with SPHERE/VLT at optical and near-infrared wavelengths, reaching an angular resolution of ~0.02", and an inner working angle of ~0.09". We detect polarized scattered light up to ~0.42" (~48 au) and detect a cavity, a rim with azimuthal brightness variations at an inclination of 38 degrees, two shadows and two symmetric spiral arms. The spiral arms originate near the location of the shadows, close to the semi major axis. We detect a faint spiral-like feature in the SW that can be interpreted as the scattering surface of the bottom side of the disk, if the disk is tidally truncated by the M-dwarf companion currently seen at a projected distance of ~119 au. We construct a radiative transfer model that accounts for the main characteristics of the features with an inner and outer disk misaligned by ~72 degrees. The azimuthal brightness variations along the rim are well reproduced with the scattering phase function of the model. While spirals can be triggered by the tidal interaction with the companion, the close proximity of the spirals to the shadows suggests that the shadows could also play a role. The change in stellar illumination along the rim, induces an azimuthal variation of the scale height that can contribute to the brightness variations. Dark regions in polarized images of transition disks are now detected in a handful of disks and often interpreted as shadows due to a misaligned inner disk. The origin of such a misalignment in HD 100453, and of the spirals, is unclear, and might be due to a yet-undetected massive companion inside the cavity, and on an inclined orbit.Comment: A&A, accepte

    First light of the VLT planet finder SPHERE. I. Detection and characterization of the sub-stellar companion GJ 758 B

    Get PDF
    GJ758 B is a brown dwarf companion to a nearby (15.76 pc) solar-type, metal-rich (M/H = +0.2 dex) main-sequence star (G9V) that was discovered with Subaru/HiCIAO in 2009. From previous studies, it has drawn attention as being the coldest (~600K) companion ever directly imaged around a neighboring star. We present new high-contrast data obtained during the commissioning of the SPHERE instrument at the VLT. The data was obtained in Y-, J-, H-, and Ks-bands with the dual-band imaging (DBI) mode of IRDIS, providing a broad coverage of the full near-infrared (near-IR) range at higher contrast and better spectral sampling than previously reported. In this new set of high-quality data, we report the re-detection of the companion, as well as the first detection of a new candidate closer-in to the star. We use the new 8 photometric points for an extended comparison of GJ758 B with empirical objects and 4 families of atmospheric models. From comparison to empirical object, we estimate a T8 spectral type, but none of the comparison object can accurately represent the observed near-IR fluxes of GJ758 B. From comparison to atmospheric models, we attribute a Teff = 600K ±\pm 100K, but we find that no atmospheric model can adequately fit all the fluxes of GJ758 B. The photometry of the new candidate companion is broadly consistent with L-type objects, but a second epoch with improved photometry is necessary to clarify its status. The new astrometry of GJ758 B shows a significant proper motion since the last epoch. We use this result to improve the determination of the orbital characteristics using two fitting approaches, Least-Square Monte Carlo and Markov Chain Monte Carlo. Finally, we analyze the sensitivity of our data to additional closer-in companions and reject the possibility of other massive brown dwarf companions down to 4-5 AU. [abridged]Comment: 20 pages, 15 figures. Accepted for publication in A&
    • …
    corecore