
TRANSACTIONS ON NETWORKING, VOL.XX, NO.XX, XX 1

ClassBench-ng: Benchmarking Packet Classification
Algorithms in the OpenFlow Era

Jiřı́ Matoušek, Adam Lučanský, David Janeček, Jozef Sabo, Jan Kořenek, Gianni Antichi

Abstract—Packet classification, i.e., the process of categorizing
packets into flows, is a first-class citizen in any networking device.
Every time a new packet has to be processed, one or more
header fields need to be compared against a set of pre-installed
rules. This is done for basic forwarding operations, to apply
security policies, application-specific processing, or quality-of-
service guarantees. A lot of research efforts have identified better
lookup techniques, i.e., finding the best match between packet
headers and rules, by capitalizing on the rule sets characteristics.
Here, ClassBench has greatly served the community by enabling
the generation of IPv4 rule sets. In this paper, we present a
new tool, ClassBench-ng, that creates synthetic IPv4, IPv6, and
OpenFlow rules. We start from an analysis of classification rules
deployed in-the-wild and we use the findings to craft our solution.
ClassBench-ng can generate a user-defined number of rules as
well as an associated header trace matching them. Compared
to state-of-the-art solutions, the rule set generation process is
usually more accurate and it is able to produce rules matching
a number of different use cases, i.e., from an IPv4 router to
an OpenFlow switch, which is unique among current rule set
generation tools.

Index Terms—ClassBench, Packet Classification, OpenFlow,
IPv4, IPv6, Synthetic Rules.

I. INTRODUCTION

EVery networking device, no matter its purpose, capacity,
or layer of operation, shares a common functionality:

packet classification. As a new packet arrives, one or more
header fields need to be compared against a set of pre-
defined rules to assign a flow identifier. This is used for basic
forwarding operations, to apply security policies, application-
specific processing, or quality-of-service guarantees.

The continuous innovation in computer networks with
the advent of IPv6 first, and Software Defined Network-
ing (SDN)/OpenFlow [2] later, alongside a constant increase
of link capacities, has repeatedly challenged state-of-the-art
packet classification algorithms. In particular, the IPv6 pro-
tocol, which is not anymore an uninteresting rarity [3], [4],

This work was supported in part by the Ministry of Education, Youth and
Sports of the Czech Republic from the National Programme of Sustainability
(NPU II), project IT4Innovations excellence in science - LQ1602, and from
the Operational Programme Research, Development and Education, project
EF18 053/0016962; in part by the Ministry of the Interior of the Czech
Republic from Security Research programme, project VI20192022143; in part
by UK EPSRC project EP/T007206/1; and in part by a gift from VMware.

J. Matoušek and J. Kořenek are with Brno University of Technology, Faculty
of Information Technology, Centre of Excellence IT4Innovations, CZ (e-mail:
imatousek@fit.vut.cz).

A. Lučanský is with Mendel University in Brno, Faculty of AgriSciences,
CZ, but he participated in this research while he was with CESNET, CZ.

D. Janeček and J. Sabo were with Brno University of Technology, Faculty
of Information Technology, CZ.

G. Antichi is with Queen Mary University of London, School of Electronic
Engineering and Computer Science, UK.

quadrupled the size of IP addresses, making the lookup process
more complex than the IPv4 case. Moreover, SDN/OpenFlow
have extendend the matching criteria to multiple fields from
different layers. This has gathered the interest of many op-
erators spanning from Internet eXchange Points (IXP) [5] to
Wide Area Networks (WAN) [6], [7], [8] and data center net-
works [9]. All those aspects have contributed in renewing the
interests of researchers and practitioners towards developing
new packet classification algorithms [10], [11], [12], [13], [14]
that could better cope with the stringent needs of fast lookup
and matching complexity.

A number of research efforts have identified better packet
classification techniques by leveraging the characteristics of
real rule sets [15], [16], [17]. Additionally, it has also
been demonstrated that the capacity and efficiency of the
most prominent hardware-based packet classification solution,
Ternary Content Addressable Memories (TCAM), are also
subject to the characteristics of rule sets [10]. So far, the lack
of publicly available rule sets has been mitigated by a number
of synthetic rule generators [18], [19], [20]. However, they
either focus on one specific case, i.e., IPv4 [18], IPv6 [20],
or they have been designed to be generic at the cost of not
following any specific real rule set characteristics [19].

In this paper, we present ClassBench-ng, a new open source
tool that can generate synthetic IPv4, IPv6, and OpenFlow
rule sets1 alongside an associated header trace matching them.
ClassBench-ng accepts as an input a description of statistical
properties for the rule set to be generated. In this context,
we analyzed a number of classification rule sets taken from
IPv4/IPv6 backbone routers and OpenFlow switches from
a cloud data center provider. Our analysis is then used to
build appropriate input configuration files for ClassBench-ng.
Finally, to make this solution attractive in the long term and for
a wide number of different use cases, we propose a mechanic
to create input parameter files from real rule sets. We aim
to use the tool’s repository as a place where researchers and
operators can continuously upload new parameter files that
match a number of different environments or use cases, e.g.,
a data center, Internet Service Provider, or Internet eXchange
Point. This will further increase the impact of ClassBench-ng
on the research community.

The main contributions of the paper can be summarized as
follows:

• An in-depth analysis of in-the-wild classification rule

1We use the term “OpenFlow rule” when referring to any classification
rule, regardless its origin, that may specify a match condition for each header
field mentioned in a given version of the OpenFlow specification.

TRANSACTIONS ON NETWORKING, VOL.XX, NO.XX, XX 2

sets from IPv4/IPv6 backbone routers and OpenFlow
switches.

• A new tool that is able to analyze and generate IPv4,
IPv6, and OpenFlow rule sets with an associated header
trace matching them.

• The tool is open and available to anyone at:
https://classbench-ng.github.io/.

The rest of the paper is organized as follows. We first
concentrate on research questions related to rule set and trace
generation (Section II). We then present an analysis of real
IPv4, IPv6, and OpenFlow data sets (Section III), alongside the
ClassBench-ng architecture (Section IV) and the experimental
evaluation (Section V). Finally, we discuss selected limitations
of current ClassBench-ng (Section VI), cover related works
(Section VII) and conclude the paper (Section VIII).

II. RESEARCH QUESTIONS

In this section, we discuss the research questions driving
the ClassBench-ng design.

A. Rule Generation
The synthetic rule generation process transforms input

parameters, which we call seeds, into a complete rule set.
Available tools use as an input either statistic distributions of
real sets [18] or user-defined characteristics [19]. It is clear
that the former is better when it is needed an output whose
attributes are as close as possible to a real case. This brings
two specific challenges: (1) what shall be included into a seed?
and (2) how to produce a rule set that reliably follow the input
seed?

Past research, i.e., ClassBench [18], has already tackled
both aspects in the context of IPv4 5-tuples. While the
representation of layer four ports and protocol was designed as
quite simple, source/destination IP prefixes required more so-
phisticated approach. The idea of ClassBench was to represent
an IP prefix set as a binary prefix tree, i.e., trie, that can be
characterized with four statistical parameters: a prefix length
distribution, a branching probability distribution, an average
skew distribution, and a prefix nesting threshold [18]. The pre-
fix length distribution characterizes the span of prefixes. The
branching probability distribution represents the probability,
at each trie level, of having one-child or two-children nodes.
Skew is instead defined in Equation 1.

skew = 1 − weight(lighter)

weight(heavier)
(1)

weight() function returns the number of prefixes in a spec-
ified subtree and lighter/heavier represent subtrees of a
two-children node with smaller/higher number of prefixes,
respectively. Finally, the prefix nesting threshold specifies
the maximum number of prefix nodes that appear on an
arbitrary path from the root to the leaves. We follow the same
representation also in this paper and we look for a way how
to extend ClassBench seeds in order to support IPv6 and
OpenFlow rule set generation.

Once this is done, it is possible to build a rule generator.
In this regard, we performed a test campaign to better un-
derstand ClassBench internals and evaluate its fidelity. Since

0 %
20 %
40 %
60 %
80 %

100 %

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

D
is

tr
ib

u
ti

o
n

Trie Depth

seed generated

(a) Branching probability distribution (two-children nodes).

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

A
v
e
ra

g
e
 S

ke
w

Trie Depth

seed generated

(b) Average skew distribution.

Fig. 1: Comparison of destination prefix set parameters from
the acl4 seed and rule sets generated from this seed using
original ClassBench (target size was set according to the
seed). The parameters of the generated sets are represented
by average, minimum, and maximum values of 10 sets.

ClassBench has demonstrated an accurate generation of layer
four ports and protocol, Figures 1 compare selected IP prefix
set parameters extracted from an input IPv4 seed and from
rules generated by original ClassBench, along with their error
bars. While the prefix nesting threshold precisely follow the
required distribution, the other parameters do not. Indeed, the
generated branching probability meets the requirements only
for 13 trie levels, while the average skew only for 5. We believe
that such errors are caused by parameters interdependence:
once a parameter with the highest priority has been fixed, the
tool tries to meet the other requirements. The prefix nesting
threshold has the highest priority, thus justifying its accuracy.
In this paper, we build upon this and we look into how to
improve rule generation fidelity while allowing the increased
number of input parameters needed to support OpenFlow.

B. Trace Generation

Having just a rule set, it is possible to perform a basic analy-
sis of classification algorithm’s memory footprint, i.e., the size
of its memory representation, and get some insights into per-
formance of simple classification approaches. However, a rule
set alone does not allow to easily test classification algorithm’s
correctness. In practice, a single input might trigger a match
of many rules, but only the one with the highest priority or
with the most specified fields shall be selected. To perform
this analysis, it is important to generate a trace associated to
a given rule set. This brings one specific challenge: given a
rule set, how to efficiently generate a trace with the minimal
number of headers, that will hit all the rules specified in the
original set?

Answering this question is trivial in case of non-overlapping
rules: create one header per rule. However, in real scenarios,

TRANSACTIONS ON NETWORKING, VOL.XX, NO.XX, XX 3

Fig. 2: Example set of 3 overlapping rules defined in two
dimensions (3-bit Address and 2-bit Port).

rules usually do overlap [21], [22], [23]. Therefore, the trace
shall ideally contain headers that will match not only each
rule individually, but also all their overlaps. Figure 2 shows
one of many possible cases of overlaps within a set of three
classification rules defined in dimensions Address (3 bits) and
Port (2 bits). The full classification space can thus be divided
into several, possibly discontinuous, subspaces that we call
regions. For instance, the space in Figure 2 consists of 8
regions (note that the list of regions is independent of rules’
priority):

• 1 region of 0-rule overlap
• 3 regions of 1-rule overlap (R1, R2, R3)
• 3 regions of 2-rule overlap (R1+R2, R2+R3, R3+R1)
• 1 region of 3-rule overlap (R1+R2+R3)

An ideal trace generator should analyze the input rule
set first and then generate a trace that will hit each region
corresponding to a non-empty set of overlapping rules. Nev-
ertheless, because of the number of classification dimensions,
e.g., up to forty five in OpenFlow 1.5.1 [24], and their size,
e.g., 2128 unique values in case of IPv6 address, a timely
analysis might be unfeasible. According to our experiments,
a real OpenFlow 1.0.0 rule set comprising approximately
20 k rules may define more than 2.14 × 1017 12-dimensional
elementary subspaces, which would the generator need to
transform into regions before even starting the trace generation
process itself. Header trace generators thus have to apply some
heuristics, which allows to generate the trace reasonably fast
and achieve a high coverage of non-empty regions at the
same time [18]. Unfortunately, the heuristic utilized by the
trace generator of original ClassBench allows to achieve a
high coverage of individual rules only. As shown in Figure 3,
its coverage of regions quickly decreases with an increasing
complexity of classification rules. In an effort to overcome this
limitation, in this paper, we answer the following question:
how to guarantee a “good” coverage for regions regardless
the complexity of an input rule set?

III. ANALYSIS OF REAL CLASSIFICATION RULES

This section provides an analysis of IP prefixes sets taken
from core routers (Section III-A), classification rules obtained
from access control lists (ACLs) and IP tables (IPTs) applied at
a university network’s perimeter (Section III-B) and OpenFlow
data sets coming from a set of Open vSwitches running in a
cloud data center (Section III-C). Table I summarizes the data
sets being used in the analysis.

 0
 20
 40
 60
 80

 100

 1 10 50 100 200 500

C
o
v
e
ra

g
e
 o

f
R

e
g

io
n
s

[%
]

Trace Size (relative to rule set size) [%]

ClassBench (IPv4)
ClassBench (ACL)

ClassBench (overlaps)

Fig. 3: Coverage of non-empty regions in rule sets of various
type (IPv4 prefixes, ACL, a rule set with many overlaps)
by header traces of different size generated using the trace
generator of original ClassBench (average of 10 traces).

TABLE I: Utilized data sets. OpenFlow set of3 exists in
several instances, one for each day in the given interval.

Prefixes
Name or Rules Source Date

IPv4 Prefix Sets
eqix_2021 986 434

Route Views [25]
2021-07-02

eqix_2005 164 455 2005-07-02
rrc00_2021 922 072

RIPE RIS [26]
2021-07-02

rrc00_2005 168 525 2005-07-02
IPv6 Prefix Sets

eqix_2021 127 008
Route Views [25]

2021-07-02
eqix_2019 73 880 2019-07-02
eqix_2005 658 2005-07-02
rrc00_2021 132 506

RIPE RIS [26]
2021-07-02

rrc00_2019 75 008 2019-07-02
rrc00_2005 499 2005-07-02

ACL and IPT Rule Sets
uni_acl_2010 96

ACLs and IPTs
from a university
network

2010-08-30
uni_acl_2015 122 2015-01-14
uni_ipt_2015 130 2015-09-21
uni_ipt_2021 227 2021-08-25

OpenFlow Rule Sets
of1 16 889 2015-05-29
of2 20 250 OpenFlow Switch 2015-05-29

of3
1 757 in a data center 2015-06-18

to to
7 456 2015-07-14

A. IP Prefixes

1) IPv4: Figures 4 compare the same prefix set (eqix)
in sixteen years time. While the prefix length distribution is
almost the same between years 2005 and 2021 (not shown),
nowadays we are facing an increase of two-children nodes in
the trie (Figure 4a) and the average skew is lower (Figure 4b).
The prefix nesting threshold remained unchanged between
2005 and 2021. The same results are also confirmed in prefix
sets rrc00. Growing number of two-children nodes and their
smaller skew correlates with approximately 6 times higher
number of prefixes after sixteen years, as shown in Table I.
Branching probability and average skew distributions follow
the same trends and although the prefix sets grew in size, prefix
length distribution is the same. These results are aligned with
the path towards the saturation of IPv4 addresses [27].

2) IPv6: We propose for the IPv6 analysis the same statis-
tical approach being used in the IPv4 context. Prefix sets are
collected from the same core routers over a span of sixteen
years.

Figures 5 compare the selected parameters between the
eqix prefix sets from years 2005 and 2021. Only the first

TRANSACTIONS ON NETWORKING, VOL.XX, NO.XX, XX 4

0 %
20 %
40 %
60 %
80 %

100 %

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

D
is

tr
ib

u
ti

o
n

Trie Depth

eqix_2021 eqix_2005

(a) Branching probability distribution (two-children nodes).

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

A
v
e
ra

g
e
 S

ke
w

Trie Depth

eqix_2021 eqix_2005

(b) Average skew distribution.

Fig. 4: Comparison between eqix IPv4 prefix sets in 2005
and 2021.

64 trie levels are shown as there were no IPv6 prefixes longer
than 48 bits in 2005. Figure 5a shows that the prefix length
distribution has changed significantly in the last sixteen years.
While prefix length 32 dominated the distribution in 2005, cur-
rently the most common prefix length is 48. This has affected
both the branching probability distribution (Figure 5b) and the
average skew distribution (Figure 5c). We believe that such a
big difference in the prefix length distribution is related to the
steady growth of IPv6 deployments, which is also indicated
by an increased prefix nesting threshold. In 2005, most of
the allocated prefixes belonged to Internet Service Providers
(ISPs) or Regional Internet Registries (RIRs), while nowadays
most of the prefixes belong to end users (organizations) [28].
Changes of branching probability and average skew between
2005 and 2021 have been also caused by the emergence of
prefixes longer than 64 bits. Prefix sets rrc00 show similar
behavior.

In 2005, both the eqix and rrc00 prefix sets contained
only a few hundreds of IPv6 prefixes, while there are currently
more than 127 thousands of prefixes in both sets (Table I). In
this context, big changes over the parameter distributions, i.e.,
branching probability and average skew, are not surprising.
However, if we compare parameter values over a shorter span
(between 2019 and 2021), where the prefix length distribution
is almost stable, the values of branching probability and
average skew distributions follow similar trends. Note that the
number of IPv6 prefixes in the eqix set increased more than
1.7 times between 2019 and 2021.

TABLE II: Distribution of rules over protocol values.

Data Set Protocol Values
wildcard TCP UDP ICMP

uni_acl_2010 26.0 % 71.9 % 2.1 % 0.0 %
uni_acl_2015 38.5 % 54.9 % 6.6 % 0.0 %
uni_ipt_2015 85.4 % 7.7 % 6.9 % 0.0 %
uni_ipt_2021 82.8 % 6.2 % 10.6 % 0.4 %

B. Ports and Protocol

The following analysis is performed using rule sets taken
from ACLs and IPTs in a university campus network (Table I).
The data in total spans over a period of eleven years to enable
a comparative analysis over time. We first concentrated on
the distribution of rules over protocol values (Table II). The
results for ACLs show an increased number of rules specifying
a wildcard or UDP, while the number of rules specifying TCP
is decreasing. The IPT rule sets represent a target state of
this trend, which is characterized by the dominance of the
wildcard specification and continuously growing number of
rules specifying UDP. The ICMP protocol starts to appear very
slowly just in the newest analyzed rule set.

Table III presents the distribution of rules over port classes,
separately for source and destination port fields. To allow
comparison with previously published analyses, we stick to
port classes proposed in [18]:

• WC — wildcard
• HI — user port range [1024 : 65535]
• LO — well-known system port range [0 : 1023]
• AR — arbitrary range
• EM — exact match

While the source port field is almost exclusively treated with
a wildcard, the destination shows interesting properties. In the
case of ACLs, arbitrary range (AR) values and wildcard (WC)
entries increase at the expenses of exact match (EM) ones
over time. However, the destination port is mostly wildcarded
in the IPT rule sets and differently from ACLs, the use of EM
is growing at the expenses of AR.

TABLE III: Distribution of rules over port classes.

Data Set Port Classes
WC HI LO AR EM

Source Port
uni_acl_2010 100.0 % 0.0 % 0.0 % 0.0 % 0.0 %
uni_acl_2015 100.0 % 0.0 % 0.0 % 0.0 % 0.0 %
uni_ipt_2015 100.0 % 0.0 % 0.0 % 0.0 % 0.0 %
uni_ipt_2021 97.8 % 0.0 % 0.0 % 0.4 % 1.8 %

Destination Port
uni_acl_2010 26.0 % 0.0 % 0.0 % 5.2 % 68.8 %
uni_acl_2015 38.5 % 0.0 % 0.0 % 8.2 % 53.3 %
uni_ipt_2015 85.4 % 0.0 % 0.0 % 7.7 % 6.9 %
uni_ipt_2021 84.6 % 0.0 % 0.0 % 2.6 % 12.8 %

Finally, we analyzed the distribution of rules over com-
bined source-destination port pair classes (PPCs). While the
most common PPC being adopted for the UDP protocol in
uni_acl_2015 is WC-AR, which represents rules specifying
a wildcard for the source port and an arbitrary range for the
destination port, the majority of rules in uni_ipt_2021
belongs to the WC-EM class. This fact is inline with a trend
towards a growing number of EM destination ports in the
uni_ipt_2021 rule set, as shown in Table III. It also
illustrates an incremental development of network security
policies: UDP rules in uni_ipt_2021 represent a superset
of UPD rules from uni_acl_2015, in which each new rule
utilizes the EM specification of a destination port.

The analysis reported in this section shows that nowadays a
wildcard is the most common type of the protocol declaration.
This is also true in the context of the destination port field,

TRANSACTIONS ON NETWORKING, VOL.XX, NO.XX, XX 5

0 %
20 %
40 %
60 %
80 %

100 %

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

D
is

tr
ib

u
ti

o
n

Prefix Length

eqix_2021 eqix_2005

(a) Prefix length distribution.

0 %
20 %
40 %
60 %
80 %

100 %

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

D
is

tr
ib

u
ti

o
n

Trie Depth

eqix_2021 eqix_2005

(b) Branching probability distribution (two-children nodes).

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

A
v
e
ra

g
e
 S

ke
w

Trie Depth

eqix_2021 eqix_2005

(c) Average skew distribution.

Fig. 5: Comparison between eqix IPv6 prefix sets in 2005 and 2021.

where the second most common type of specification is EM.
Its use reflects an incremental development of network security
policies in a university campus network.

C. OpenFlow

This section provides an analysis of real OpenFlow rule sets
taken from a cloud data center in operation. We focused our
study on understanding the statistical properties of OpenFlow-
based rule sets as well as their temporal behavior. This
is a once-in-a-lifetime opportunity to observe technological
changes on such a grand scale, which is both practically
and scientifically important. We first focus on a header fields
distribution (Section III-C1). Then we moved our attention
to fields dependency (Section III-C2) and rule set dynamics
(Section III-C3).

1) Header Fields: OpenFlow 1.0.0 extends the standard 5-
tuple, i.e., ip src, ip dst, l4 src, l4 dst, and ip proto, with
seven more header fields [29]. Figure 6 shows the header field
distribution in rule sets of1 and of2 introduced in Table I.
Fields from the standard 5-tuple present a non-wildcard value
in at least 20 % of rules, while, except for mac dst and
eth type, the others show a big predominance of wildcard
entries. Moreover, header fields vlan id, vlan prio, and ip tos
are never specified. It is clear that in this case the network
configuration plays a key role, i.e., virtual LANs are not
enabled.

0 %
20 %
40 %
60 %
80 %

100 %

in
_p

or
t

m
ac

_s
rc

m
ac

_d
st

et
h_

ty
pe

vl
an

_id

vl
an

_p
rio

ip
_t
os

ip
_p

ro
to

ip
_s

rc

ip
_d

st

l4
_s

rc

l4
_d

st

D
is

tr
ib

u
ti

o
n

Header Fields

specified wildcarded

Fig. 6: Per-field distribution of rules from the combined
of1+of2 rule set over specified and wildcarded classes.

Table IV shows a per-field count of unique values2 being
used in rule sets of1 and of2, alongside their uniqueness
factor expressed in percentage. The factor estimates the per-
field variance between rules. For instance, a value close to zero
suggests little variance, i.e., rules specifying that field tend to
use every time the same value, while a value close to one
suggests the exact opposite. The uniqueness factor shows an
interesting property of the of1 data set. While the mac dst
field has the highest number of unique values, its uniqueness
factor is close to zero. In contrast, the in port field has the
highest uniqueness factor. Therefore, we can state that rules
specifying a value for in port are physical-port-oriented, i.e.,

2eth type presents just one value referred to the IPv4 type – 0x0800

TRANSACTIONS ON NETWORKING, VOL.XX, NO.XX, XX 6

TABLE IV: Per-field count of unique values and associated uniqueness factor expressed in percentage (in parenthesis).

Rule Set in port mac src mac dst eth type ip proto ip src ip dst l4 src l4 dst
of1 123 (86.6) 27 (3.2) 593 (4.7) 1 (<0.1) 3 (0.3) 478 (4.6) 109 (0.9) 4 (2.9) 48 (2.2)
of2 140 (86.4) 19 (8.1) 791 (5.0) 1 (<0.1) 3 (0.1) 390 (2.8) 97 (0.7) 4 (<0.1) 8227 (92.7)

the value of in port represents the most important part of the
rule. Things changes in the of2 data set. In this case, we
can assert that rules specifying a value for the l4 dst field are
application-oriented.

Regarding the prefix length distribution, the most common
lengths of ip src prefixes in the of1 data set are 0 (a wildcard
rule), 10, and 32 (an exact match rule). Similar trends can
also be found for the ip dst field of the of1 data set and
both IP fields belonging to the of2 data set. The differences
between the presented prefix length distribution and the one
from Section III-A are big. We justify this considering the
nature of OpenFlow rules: they are not dictated by any routing
protocol unless a given daemon is running on the top of the
controller. In addition, the different environment (a core router
for the previous study and a cloud data center for this one)
plays an important role.

A further analysis of data sets of1 and of2 shows that
the TCP protocol is specified only in 14.03 % of rules while
10.59 % of rules specify the ICMP protocol. Trends similar
to what was shown in Section III-B can also be shown for
the distribution of source/destination port values over five port
classes and their combination into source-destination port pair
classes.

2) Rule Types: In this section we provide an analysis of
fields dependency. In particular, we characterize the relation-
ship between header fields to study which fields are more
likely to be specified together. Figure 7 shows the results of
our analysis on the combined of1+of2 rule set. We define
rule type as a template that indicate which header fields are
specified, i.e., have a non-wildcard value in a rule. To easier
the graph representation, each rule type has been associated to
a 12-bit number (rule type number) where each bit is referred
to a given header field. The bit set to 1 stands for a specified
field, while 0 for a wildcard. While it is clear that rule type
number 0 refers to the combination of all header fields with a
wildcard and 4 095 the exact opposite, it is important to define
the bit-field correlation to correctly read the proposed graph.
Starting from the most significant bit we used the following
order: in port, mac src, mac dst, eth type, vlan id, vlan prio,
ip tos, ip proto, ip src, ip dst, l4 src, and l4 dst. Given the
proposed encoding scheme, rule type number 796 refers to
rules where mac dst, eth type, ip proto, ip src, and ip dst
present specified values, while other fields a wildcard. Despite
there are 4 096 possible rule types, the amount of rule types
being used is much lower. In practice, our OpenFlow data sets
of1 and of2 contain rules of 18 types only. Six of them are
the most common and appear in more than 5 % of the cases.

Figure 6 shows that eth type and ip proto are specified
by the same number of rules. Moreover, eth type is always
defined as IPv4 (value 0x0800) and it appears only in rules
that define also ip proto (note rule types 788, 789, 796, 1304,
and 1305 in Figure 7). For the sake of analysis they can be

0 %
5 %

10 %
15 %
20 %
25 %
30 %
35 %

0 4 7 8
51

2
51

6
51

9
52

4
52

7
78

8
78

9
79

6
10

24
10

32
13

04
13

05
15

51
20

48

D
is

tr
ib

u
ti

o
n

Rule Type Number

Fig. 7: Distribution of rules from the combined of1+of2 rule
set over rule types.

considered redundant. Thus, mac dst is the only OpenFlow
header field that is specified in all the most common rule types.

3) Dynamics: Figure 8 shows the dynamics of rule set of3
over a two-week period. We define the rate of changes as the
size (cardinality) of symmetric difference divided by the size
of union of of3 in two subsequent days.

0 %
20 %
40 %
60 %
80 %

100 %

20
15

-0
7-

01

20
15

-0
7-

02

20
15

-0
7-

03

20
15

-0
7-

04

20
15

-0
7-

05

20
15

-0
7-

06

20
15

-0
7-

07

20
15

-0
7-

08

20
15

-0
7-

09

20
15

-0
7-

10

20
15

-0
7-

11

20
15

-0
7-

12

20
15

-0
7-

13

20
15

-0
7-

14

R
a
te

 o
f

C
h
a
n
g

e
s

Day of Origin

Fig. 8: Rate of changes (compared to the previous day) of rule
set of3 between 1st and 14th July 2015.

The studied data center environment has 220 physical
hypervisors. The analysis has been performed exporting a flow
table snapshot from the same hypervisor every day at the
same time. Users creating/deleting virtual machines (VMs) or
updating security profiles on any VM trigger a flow change.
While the rate remains stable in June (not shown) and for
the first week of July, it presents a spike on 7th July 2015.
On that day, in fact, the number of rules decreased drastically
due to a large number of deleted VMs, thus creating the big
spike in the rate of changes. Nevertheless, almost all remining
rules were a part of the rule set already on the previous days
(i.e., the number added rules was similar to other days in the
considered range).

IV. CLASSBENCH-NG: NEXT GENERATION CLASSBENCH

This section discusses the design of ClassBench-ng. Fig-
ure 9 shows its high-level architecture composed by three main
building blocks. The Analyser takes as input either IPv4/IPv6
5-tuples or OpenFlow rules to produce seeds that can be then

TRANSACTIONS ON NETWORKING, VOL.XX, NO.XX, XX 7

used to feed the Rule Generator module in charge of producing
synthetic rule sets or their updates. The Trace Generator
instead produces a sequence of packet headers to exercise
packet classification algorithms with respect to a given filter
set.

Fig. 9: High-level architecture of ClassBench-ng.

A. Analyser

ClassBench-ng already provides seeds for rule generation.
However, we believe a seed generator is necessary to adapt
the tool to a number of different scenarios, especially for
OpenFlow-enabled networks where the dynamics are bounded
by applications running on top of a controller.

Both the 5-Tuples and OpenFlow Analysis blocks have been
built from scratch. Analyser of 5-tuples parses either an IPv4
or IPv6 rule set according to a provided format description
and produces a corresponding seed with the same structure
as defined by original ClassBench. This analyser is therefore
able to parse rule sets in common formats (those defined
by ipfw, iptables, pf, and other tools) as well as any
unusual and non-standard formats, as long as they can be
described in the format file. On the other hand, OpenFlow
analyser is able to correctly parse a rule set in the format used
by the ovs-ofctl tool [30] and generate the appropriate
OpenFlow 1.0 seed.

An OpenFlow seed is composed of three main elements:
(1) a rule type distribution, (2) a 5-tuple seed, and (3) an
OpenFlow-specific fields seed. The first provides an overview
of fields dependency (as shown in Section III-C2) and
the second supplies 5-tuple-related distributions. Finally, an
OpenFlow-specific fields representation is based on the fol-
lowing types:

• values — a distribution over a set of original values;
• parts — a distribution over a set of the selected part of

original values;
• size — a total number of unique original values;
• null — no representation.
The pairing between a type and a particular header field

reflects different requirements. As an example, the values
representation contains specific information from the original
rule set. Therefore, it is appropriate only for fields that do
not carry confidential data, i.e., in port and eth type. On the
other hand, null and size representations do not include values
from the original rule set, thus they are suitable for header
fields carrying confidential content. The former (null) is used
for header fields with a relatively small number of possible
values, i.e., vlan prio and ip tos, while the latter (size) is used
for header fields with a potentially big subset, i.e., vlan id.
Finally, parts represents a trade-off between values and null.

1: function IMPROVEDCLASSBENCH(seed, size)
2: output rules← ∅
3: rules← CLASSBENCH(seed, size · 100)
4: src trie← TRIEPRUNING(rules.src trie, seed, size, 4)
5: dst trie← TRIEPRUNING(rules.dst trie, seed, size, 4)
6: max match← MAXBIMATCH(src trie, dst trie, rules)
7: for each rule ∈ max match do
8: output rules← output rules ∪ {rule}
9: rules← rules \ {rule}

10: REMOVEPREFIX(src trie, rule.src prefix)
11: REMOVEPREFIX(dst trie, rule.dst prefix)
12: for each dst prefix ∈ dst trie do
13: if not TRIEISEMPTY(src trie) then
14: rule← SELECTRULE(rules, dst prefix)
15: rules← rules \ {rule}
16: src prefix← GETANYPREFIX(src trie)
17: REMOVEPREFIX(src trie, src prefix)
18: REPLACESRCPREFIX(rule, src prefix)
19: output rules← output rules ∪ {rule}
20: return output rules
21: end function

Fig. 10: Pseudocode of rule set construction in Improved
ClassBench.

ClassBench-ng uses this representation for the mac src and
mac dst header fields, as it stores their vendor part in a seed.

B. Rule Generator

This module can successfully generate rule sets of various
length given an input seed reflecting either IPv4, IPv6 or Open-
Flow semantic. The first two capabilities have been built on top
of the original ClassBench while improving its original fidelity.
The OpenFlow rule generator has been created from scratch,
instead. Optionally, the module can also generate sequences
of rule set updates following user-defined parameters.

1) IPv4 and IPv6: Our first insight is that it is possible
to restructure the original ClassBench to generate both IPv4
and IPv6 rule sets. The main reason is that the construction
mechanic adopted by ClassBench does not depend on specific
IPv4 features and thus can be potentially extended to support
larger fields, i.e., IPv6. To improve its generation fidelity
(Section II-A) we designed a solution that iteratively build an
output rule set with characteristics as close as possible to the
input seed. The pseudocode in Figure 10 shows the process of
rule set construction in our Improved ClassBench block. The
tool first creates a big rule set using the original ClassBench
application (line 3). Then it applies the algorithm described
in Figure 11 and prunes the tries representing source and
destination IP prefix sets to converge on a solution which is
accurate and contain the target number of IP prefixes (lines 4,
5). To provide enough freedom for trie pruning, the tool
currently generates a rule set that is 100-times larger than
the specified target size. Any larger and probably also some
smaller rule sets would work, but this parameter need not be
optimized as the rule set generation is not the most time-
consuming part of the algorithm.

The main idea behind Improved ClassBench is to select rules
from the initial set, i.e., rules, that contain source/destination
IP prefixes available also in the pruned tries, i.e., src trie and

TRANSACTIONS ON NETWORKING, VOL.XX, NO.XX, XX 8

dst trie. To find these rules, the tool employs the maximum
matching in a bipartite graph algorithm (line 6). The selected
rules are added to the final set, i.e., output rules, as shown in
line 8. Every time a new rule is added, it is also removed from
the initial set (line 9) and its source and destination prefixes
are removed from the pruned tries as well (lines 10, 11). In
case the maximum matching does not return the target number
of rules, the last loop (line 12) creates the remaining rules by
replacing a source prefix with an arbitrary prefix from src trie
(lines 14 to 18).

Figure 11 shows the pseudocode of the previously intro-
duced trie pruning process. In addition to its parameters trie,
seed (target values of trie parameters are extracted from line 3
to 6), and target size, parameter n is used to fix the number
of iterations over the last two pruning steps. These iterations
try to minimize the negative effect of the convergence over
the target amount of prefixes on average skew. While each
iteration decreases the number of prefixes in the trie by
1
n ·orig size (line 13), the last iteration adjusts the number of
prefixes to the target value (target size parameter), as shown
in line 11.

Branching Probability Adjustment: This step (line 7)
adjusts branching probability at each trie level (starting from
the root of the trie) by removing a subtree of two-children
nodes and then a subtree of one-child nodes. Sub-trees to be
removed are selected increasingly according to the number of
prefixes they carry. Moreover, this step never removes the last
branch with the maximum prefix nesting to not alter the prefix
nesting threshold (already met by original ClassBench).

Average Skew Distribution Adjustment: This step (line 9)
increases or decreases average skew at each trie level (starting
from the leaves of the trie). In particular, it removes prefixes
from the lighter or the heavier subtree of two-children nodes.
As in the previous case, nodes are selected increasingly
according to the total number of prefixes in their subtrees.
This step does not remove the last prefix from the leaf nodes
and it tries to not alter average skew when removing prefixes
at already adjusted levels, i.e., levels below the current level.

Prefix Length Distribution and the Total Number of
Prefixes Adjustment: This step (lines 11 and 13) removes
prefixes at each trie level (starting from the root of the trie)
to get their total number matching the target value. When
removing the prefixes, the algorithm also tries to not alter the
skew of two-children nodes; this is obtained by tracking the
number of prefixes that should be removed from each subtree.
Similarly to the average skew distribution adjustment, this step
does not remove the last prefix from leaf nodes: doing so
would imply the deletion of the whole branch, thus altering
the branching probability.

2) OpenFlow Generation: The OpenFlow Generation
block generates a set of OpenFlow rules from an input seed.
Figure 12 shows the pseudocode of the generation process.
IPv4 5-tuples are generated according to the OpenFlow seed
using the modules present in the Improved ClassBench block
(line 3). Each generated 5-tuple is then transformed to an
OpenFlow rule that complies with the generated ruletype
(line 5). In particular, some of the created fields might be
removed (function REMOVE in line 8) and some OpenFlow-

1: function TRIEPRUNING(trie, seed, target size, n)
2: orig size← GETSIZE(trie)
3: prefixes← GETPARAM(seed, “prefix length distr”)
4: one child← GETPARAM(seed, “one child prob”)
5: two children← GETPARAM(seed, “two children prob”)
6: skew ← GETPARAM(seed, “skew distr”)
7: ADJUSTBRANCHING(trie, one child, two children)
8: for each i ∈ [1, n] do
9: ADJUSTSKEW(trie, skew)

10: if i = n then
11: ADJUSTPREFIXES(trie, prefixes, target size)
12: else
13: ADJUSTPREFIXES(trie, prefixes, n−i

n
· orig size)

14: return trie
15: end function

Fig. 11: Pseudocode of trie pruning.

1: function OPENFLOWGENERATION(seed, size)
2: of rules← ∅
3: ipv4 5tuples← IMPROVEDCLASSBENCH(seed, size)
4: for each rule ∈ ipv4 5tuples do
5: rule type← GENERATE(seed, “rule type”)
6: for each field ∈ IPv4 5-tuple fields do
7: if field /∈ rule type then
8: REMOVE(rule, field)
9: for each field ∈ OpenFlow-specific fields do

10: if field ∈ rule type then
11: field value← GENERATE(seed, field)
12: ADD(rule, field value)
13: of rules← of rules ∪ {rule}
14: return of rules
15: end function

Fig. 12: Pseudocode of OpenFlow rules generator.

specific fields might be added (function ADD in line 12).
To generate consistent OpenFlow rules, some dependency

among fields has to be ensured. As an example, the value
of eth type depends on the presence of several others header
fields, e.g., the presence of a VLAN tag. Per-field constraints
are also taken into account: the value of ip tos is randomly
selected from a pool of values defined by IANA [31], while the
values of 0x000 and 0xFFF for vlan id are not allowed (the
VLAN standard [32] reserves these values for a special pur-
pose). A similar approach is applied when generating the value
of mac src and mac dst, which use the parts representation.
Their vendor part is generated according to the distribution
from the seed, but the device part is randomly generated.

3) Rule Set Updates: The Rule Generator module can also
produce a sequence of rule set updates for IPv4, IPv6, and
OpenFlow. In its current form, it requires the user to provide as
an input probability distributions for three key parameters: (1)
time between updates; (2) number of added rules per update;
(3) number of removed rules per update. Those effectively
represent a seed for the rule update mechanism.

In Figure 13, we show the pseudocode of the rule set
update function. To ensure that a rule set and its updates
follow the characteristics associated with its input seed, the
updates generator first creates twice the specified number of
rules (line 2) and then splits the generated rule set into an
initial snapshot (curr rul) and a set of rules that can be

TRANSACTIONS ON NETWORKING, VOL.XX, NO.XX, XX 9

1: function UPDATESGEN(seed, size, period, add, rem, t max)
2: rules← CLASSBENCH-NG(seed, size · 2)
3: curr rul, other rul← SPLIT(rules, 2)
4: time← 0
5: SAVE(time,∅,∅, curr rul)
6: while true do
7: time← time+ SAMPLE(period)
8: if time > t max then
9: return

10: n add← SAMPLE(add)
11: n rem← SAMPLE(rem)
12: if (n add > |other rul|)∨(n rem > |curr rul|) then
13: return
14: add rul← SELECTRULES(other rul, n add)
15: rem rul← SELECTRULES(curr rul, n rem)
16: other rul← (other rul \ add rul) ∪ rem rul
17: curr rul← (curr rul \ rem rul) ∪ add rul
18: SAVE(time, add rul, rem rul, curr rul)
19: end function

Fig. 13: Pseudocode of rule set updates generator.

1: function TRACEGEN(rules, size, overlap foc, par a, par b)
2: gen num← NOREUSEGEN(rules, size)
3: overlap← ∅
4: while gen num < size do
5: prim← SELPRIM(overlap foc, overlap, rules)
6: sec← SELSEC(prim, rules)
7: hdr ← GENHDR(prim, sec)
8: gen num += PRINTHDRS(hdr, par a, par b)
9: if OVERLAP(prim, sec) then

10: overlap← overlap ∪ {prim, sec}
11: mrg ← MERGERULES(prim, sec)
12: nsec← SELNSEC(mrg, prim, sec, rules)
13: if OVERLAP(mrg, nsec) then
14: overlap← overlap ∪ {nsec}
15: hdr ← GENHDR(mrg, nsec)
16: gen num += PRINTHDRS(hdr, par a, par b)
17: end function

Fig. 14: Pseudocode of header trace generator.

added through updates (other rul). This can be see in line 3.
Each update then consists of newly added rules taken from
other rul and removed current rules taken from curr rul
(lines 14 and 15, respectively). The generator therefore cannot
add or remove rules that are not in other rul or curr rul
(line 12) and the size of each rule set snapshot is between 0
and 2 ·size. Moreover, time of the last update cannot be larger
than the user-defined t max parameter (line 8).

The current implementation samples random values for a
period between updates, the number of added rules, and the
number of removed rules (lines 7, 10 and 11, respectively)
from independent normal distributions with user-defined pa-
rameters, but it can be easily adapted to any other relevant
mix of distributions. Generated rules to be added, rules to
be removed, and a corresponding rule set snapshot for each
update are stored in separate files (lines 5 and 18). In addition,
the generator prints an “update plan” (i.e., which rules to add
and remove at which time) on the standard output.

C. Trace Generator

This module generates a sequence of packet headers that
match an input rule set, i.e., IPv4, IPv6 or OpenFlow, and

cover a high percentage of non-empty regions at the same time
(Section II-B). The pseudocode of the trace generator is shown
in Figure 14. First, the function NOREUSEGEN randomly
iterates over the rules provided as input and generates a
matching header for each of them (line 2). The function exits
when either the required trace size is reached or all the input
rules have been scanned. If the latter, a new loop starts to reach
the requested size (line 4). The main idea behind this loop is to
augment the trace with headers matching more than one rule
at a time. To do so, it is important to find overlapping rules.
Depending on the amount of present overlaps and the overall
size of a rule set, finding all overlaps may be impossible
due to memory requirements and time complexity. Instead of
performing such analysis, the generator iteratively selects a
random primary rule prim (line 5) with a bias towards known
overlapping rules. The function SELSEC tries to pair prim with
an overlapping secondary rule (line 6). If a match is not found
after a number of tries, the last unsuccessful pairing is used. A
header is generated (line 7) by choosing values that match both
rules where possible, otherwise prim’s conditions are favored.
The header is then inserted into the trace multiple times, where
the number of repetitions is sampled from a Pareto distribution
(line 8). If an overlapping pair is found, a new temporary rule
is created by merging the two rules (line 11). It is then used
as a new primary rule and the same process of searching for
an overlap repeats. This time a header is generated only if an
overlapping pair is found.

V. CLASSBENCH-NG EVALUATION

This section first evaluates ClassBench-ng’s Rule Gen-
erator, focusing on the generation of IPv4 prefixes (Sec-
tion V-A), IPv6 prefixes (Section V-B), and OpenFlow rules
(Section V-C). In the case of IPv4 prefixes we compare
ClassBench-ng against ClassBench [18] and FRuG [19], while
IPv6 prefixes generation fidelity is compared against Non-
random Generator [33]. Finally, the OpenFlow Generation
block is evaluated against FRuG [19]. We do not asses layer
four ports and protocol generation, as ClassBench-ng relies
directly on ClassBench for them.

The evaluations of Rule Generator use the root-mean-square
error (RMSE), defined in Equation 2, to fairly compare the
different tools. In the equation, n represents the number of
generated rule sets, ȳ is the target value, and yi stands for the
generated ones. The experiments are carried on by generating
10 rule sets, i.e., n = 10, using tool-specific seeds extracted
from an original rule set. In this case, the characteristics of
the original rule set represent the target values, i.e., ȳ, against
which we compare the same characteristics extracted from rule
sets generated by various tools, i.e., yi.

RMSE =

√√√√ 1

n

n∑
i=1

(ȳ − yi)2 (2)

The last two parts of this section are devoted to the
evaluation of the rule set updates generation feature of Rule
Generator (Section V-D) and ClassBench-ng’s Trace Gener-
ator (Section V-E). While the evaluation of rule set updates

TRANSACTIONS ON NETWORKING, VOL.XX, NO.XX, XX 10

 0
 0.02
 0.04
 0.06
 0.08

 0.1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

R
M

S
E

Prefix Length

ClassBench-ng
ClassBench

FRuG

(a) Prefix length distribution.

 0
 0.2
 0.4
 0.6
 0.8

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

R
M

S
E

Trie Depth

ClassBench-ng
ClassBench

FRuG

(b) Branching probability distribution (two-children nodes).

 0

 0.2

 0.4

 0.6

 0.8

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

R
M

S
E

Trie Depth

ClassBench-ng
ClassBench

FRuG

(c) Average skew distribution.

Fig. 15: Comparison of root-mean-squared error of
ClassBench-ng, ClassBench, and FRuG in IPv4 prefix
sets generation.

generation compares the number of added and removed rules
per update between real and synthetic update sequence, the
evaluation of trace generation is based on a comparison
of ClassBench-ng against original ClassBench using three
parameters: the coverage of a rule set by the generated trace,
generator’s run time and its memory consumption. Similarly
to the evaluation of Rule Generator, presented results for both
rule set updates and header trace generation are based on 10
independent generation runs for each experimental setting.

A. IPv4 Prefixes Generation

This section compares the RMSE of ClassBench-ng, Class-
Bench, and FRuG on IP prefix set parameters. We first
generated an original rule set with ClassBench using the
acl4 seed provided with this tool. Then, capitalizing on
FRuG/ClassBench-ng capabilities of producing input seeds
from an input rule set, we created the appropriate seeds for
FRuG, ClassBench-ng, and ClassBench. We then used these
seeds to generate back rule sets whose characteristics are
assessed using their RMSE.

The comparison of ClassBench-ng, ClassBench, and FRuG
on destination IP prefix set generation is shown in Figures 15.
In terms of a branching probability distribution (Figure 15b),

ClassBench-ng outperforms ClassBench and results to be
worse than FRuG at only one trie level. The situation is
more balanced with respect to an average skew distribution
(Figure 15c). In this case, ClassBench-ng is more precise
in approximately 50 % of trie levels when compared against
ClassBench and in more than 80 % of levels when compared
against FRuG. On the other hand, Figure 15a shows poor
performance of ClassBench-ng with respect to prefix length
distribution fidelity. Although it is not possible to improve
ClassBench-ng generation fidelity for this parameter without
impacting negatively on the other ones, it is worth noting that
in this case the RMSE is ten times lower than for the other
parameters, making ClassBench-ng overall a more accurate
solution. In fact, Figure 16 shows the average RMSE per trie
level when all the evaluated parameters are considered at once.
In this case, ClassBench-ng outperforms the other solutions
in most of the trie levels, and in particular the 24th, which
is the most commonly used in operation (Section III-A). The
comparison of the tools on generated source IP prefixes shows
similar results for all parameters with the exception of the
average RMSE, where original ClassBench slightly overcomes
our tool.

 0
 0.1
 0.2
 0.3
 0.4

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32A
v
e
ra

g
e
 R

M
S

E

Trie Depth

ClassBench-ng
ClassBench

FRuG

Fig. 16: Average root-mean-squared error of ClassBench-ng,
ClassBench, and FRuG in IPv4 prefix sets generation.

B. IPv6 Prefixes Generation
To evaluate the quality of IPv6 prefix set generation of

ClassBench-ng against Non-random Generator, we used two
prefix sets that come from the same core router. An input
seed for ClassBench-ng was extracted from IPv6 prefix set
rrc00_2019, while Non-random Generator’s input consisted
directly of IPv4 prefix set rrc00_2019. Although such a
setup leads to a not entirely fair comparison of the tools, we
note that Non-random Generator requires an IPv4 prefix set
to generate an IPv6 prefix set.

Results of the comparison are shown in Figures 17. Both
ClassBench-ng and Non-random Generator achieve compara-
ble quality of generation in terms of a prefix length distribution
(Figure 17a). However, ClassBench-ng is more precise with
respect to a branching probability distribution (Figure 17b)
and Non-random Generator wins the comparison on an average
skew distribution (Figure 17c). We saw the same results also
for IPv6 prefix sets generated according to real prefix sets from
other core routers and years.

C. OpenFlow Rules Generation
OpenFlow rules generation capability of ClassBench-ng is

compared against FRuG on two different aspects: (1) field de-

TRANSACTIONS ON NETWORKING, VOL.XX, NO.XX, XX 11

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

R
M

S
E

Prefix Length

ClassBench-ng Non-random Generator

(a) Prefix length distribution.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

R
M

S
E

Trie Depth

ClassBench-ng Non-random Generator

(b) Branching probability distribution (two-children nodes).

 0

 0.2

 0.4

 0.6

 0.8

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

R
M

S
E

Trie Depth

ClassBench-ng Non-random Generator

(c) Average skew distribution.

Fig. 17: Comparison of root-mean-squared error of ClassBench-ng and Non-random Generator in IPv6 prefix sets generation.

pendencies represented by the rule type parameter introduced
in Section III-C2 and (2) generation of selected OpenFlow-
specific fields. As a common original rule set, which is
required to fairly asses the two tools using an RMSE, we
chose of1.

Figure 18a compares the ClassBench-ng rule type RMSE
against the one obtained with FRuG. With respect to this
experiment, our tool clearly outperforms FRuG as it achieves
higher RMSE only for rule types 1304 and 2048. Therefore,
ClassBench-ng is more accurate in characterizing the relation-
ship between header fields, i.e., which fields are more likely
to be specified together in a rule. ClassBench-ng also proves
to be more accurate in the generation of selected OpenFlow-
specific header fields (Figure 18b). As vlan id, vlan prio,
and ip tos are always wildcarded in available rule sets, we
focus the assessment of OpenFlow field generation on the
in port, mac src, mac dst, and eth type header fields. While
the average RMSE of ClassBench-ng and FRuG is almost the
same (and very low) for in port, in the case of other fields our
tool is clearly better. Finally, Figure 18c shows the RMSE for
the values of vendor part of the mac dst field. ClassBench-
ng outperforms FRuG for all generated values. These results
are also confirmed in rule sets generated according to of2,
although compared to ClassBench-ng, the RMSE of FRuG is
smaller at a few more data points than in the case of rule sets
based on of1.

D. Rule Set Updates Generation

Here, we test ClassBench-ng capabilities to deal with rule
set updates. We first generated a synthetic rule set using a seed
extracted from of1 and then created a sequence of updates
given the dynamic characteristics of the of3 dataset between
30th June and 6th July 2015 (Section III-C3).

The comparison of the number of added and removed rules
per update between real and synthetic datasets is shown in
Figure 19 (note flipped axis for removed rules). The number of
removed rules per generated update very precisely follows the
situation in the real sequence that is characterized by a small
value of a standard deviation (σrem = 6.644). On the other
hand, the difference between minimum and maximum number
of added rules per generated update is larger. However, this
is in line with properties of the real update sequence (note
its high standard deviation value σadd = 142.076). We saw
similar results also for longer update sequences and updates
generated from an of2-based seed, which we do not show
here due to space constraints.

E. Header Trace Generation

The evaluation of ClassBench-ng’s Header Trace Generator
was performed using at least one input rule set for each
supported type (see Table V). These rule sets were generated
by ClassBench-ng’s Rule Generator using seeds extracted from
corresponding real rule sets (see Table I) or a seed taken from

TRANSACTIONS ON NETWORKING, VOL.XX, NO.XX, XX 12

 0
 0.004
 0.008
 0.012
 0.016

4 7 8
51

2
51

6
51

9
52

4
52

7
78

8
78

9
79

6
10

24
10

32
13

04
13

05
15

51
20

48

R
M

S
E

Rule Type

ClassBench-ng FRuG

(a) OpenFlow rule types.

 0
 0.002
 0.004
 0.006
 0.008

 0.01

in_port mac_src mac_dst eth_type

A
v
e
ra

g
e
 R

M
S

E

OpenFlow Header Fields

ClassBench-ng FRuG

(b) Average RMSE for selected OpenFlow-specific fields.

 0
 0.004
 0.008
 0.012
 0.016

 0.02

an
y

c2
:8

1:
09

fa
:1

6:
3e

ff:
ff:
ff

00
:e

0:
2b

00
:0

0:
00

01
:0

0:
0c

01
:0

0:
00

01
:8

0:
c2

R
M

S
E

mac_dst (vendor part)

ClassBench-ng FRuG

(c) Vendor part of mac dst.

Fig. 18: Comparison of root-mean-squared error of
ClassBench-ng and FRuG in OpenFlow rule sets generation.

-200

 0

 200

 400

 600

20
15

-0
7-

01

20
15

-0
7-

02

20
15

-0
7-

03

20
15

-0
7-

04

20
15

-0
7-

05

20
15

-0
7-

06

-600

-400

-200

 0

 200A
d

d
e
d

 R
u
le

s

R
e
m

o
v
e
d

 R
u
le

s

Day of Update

added (real)
removed (real)

added (gen)
removed (gen)

Fig. 19: Comparison of the number of added and removed
rules in real rule set updates (of3, see Section III-C3) and
generated rule set updates (seed extracted from of1; distribu-
tions for updates generation extracted from of3). The results
for generated updates are represented by average, minimum,
and maximum values from 10 generation runs. Note flipped
axis for removed rules.

original ClassBench (i.e., acl4_gen). With the exception of
an OpenFlow rule set, the size of the generated rule sets is
of the same order of a magnitude as in case of corresponding
real rule sets.

Table V shows the number of rules, rule overlaps, and
distinct regions (as defined in Section II) for each rule set.

TABLE V: Gereated rule sets used as trace generator’s input.

Name Rules Overlaps Regions
ipv4_rrc00_2019_gen 100 000 12 095 100 000
ipv6_rrc00_2019_gen 10 000 1 10 000
acl4_gen 1 000 332 1 287
of1_gen_1k 1 000 40 800 41 800

While overlaps do not introduce new regions in case of IPv4
and IPv6 prefixes (a longer prefix is always fully contained in
a shorter prefix), this is not the case for more complex rules
like ACL and OpenFlow. Therefore, to allow a full coverage
of rule set’s regions, the size of a header trace generated by
the trace generator has to be proportional to the number of
regions in the input rule set, not its size in terms of rules.

Firstly, we evaluated the coverage of rule sets’ regions
by header traces of a various size generated using Header
Trace Generators of ClassBench and ClassBench-ng. Since
the trace generator of ClassBench is able to produce traces
that cover up to 100 % of regions in IP prefix sets (see
Figure 3), Figure 20 presents the results for more complex
rule sets (i.e., ACL and OpenFlow) only. The figure clearly
shows that in case of reasonably large ACL traces (the same or
larger number of headers compared to the number of regions),
ClassBench-ng’s trace generator is able to produce traces that
cover approximately 20 % more regions than traces generated
by ClassBench’s trace generator. Moreover, the results are
even better for the OpenFlow rule set. Its coverage keeps
increasing with larger traces generated by ClassBench-ng’s
trace generator, although it is constant (and very small) in
case of traces generated by the trace generator of ClassBench.

 0
 20
 40
 60
 80

 100

 1 10 50 100 200 500

C
o
v
e
ra

g
e
 o

f
R

e
g

io
n
s

[%
]

Trace Size (relative to number of regions) [%]

ClassBench-ng (ACL)
ClassBench-ng (OF)

ClassBench (ACL)
ClassBench (OF)

Fig. 20: Comparison of complex rule sets’ regions coverage by
header traces of various size generated using trace generators
of original ClassBench and ClassBench-ng (average of 10
traces).

Finally, we evaluated memory consumption and execution
time of the trace generators. Although memory consumption
of ClassBench-ng’s trace generator is always little higher
compared to the trace generator of ClassBench (see Table VI),
both generators have almost constant memory requirements,
regardless the size of a generated trace. ClassBench-ng’s trace
generator thus achieves a better coverage at the cost of higher
excution time, which rapidly increases with the complexity
of an input rule set and the size of a generated trace. For
instance, to generate a trace containing 5-times more headers
compared to the number of regions, ClassBench-ng needs
3 orders of a magnitude longer time compared to original
ClassBench in case of IPv4, IPv6, and ACL rule sets and
2 orders of a magnitude longer time in case of an OpenFlow

TRANSACTIONS ON NETWORKING, VOL.XX, NO.XX, XX 13

rule set. Nevertheless, absolute execution time of ClassBench-
ng’s trace generator (between 29.4 s for ACL and 1497.9 s for
IPv4) can be seen as affordable, considering that a header trace
corresponding to a rule set is generated only once and then
used multiple times.

TABLE VI: Peak real memory usage of ClassBench’s and
ClassBench-ng’s trace generators when generating header
traces with size between 1 % and 500 % of regions in a
corresponding input rule set (average of 10 runs).

Header Trace Generator IPv4 IPv6 ACL OpenFlow

ClassBench min [MB] 142.2 23.1 11.2 11.2
max[MB] 175.3 27.2 11.6 11.5

ClassBench-ng min [MB] 153.1 24.2 11.4 11.4
max[MB] 186.4 28.3 11.7 11.4

VI. DISCUSSION

Adding Support for New Header Fields. ClassBench-ng has
never been intended for generating rule sets and header traces
with user-defined fields. Instead, its set of supported fields
is hardcoded and the structure of seeds is fixed. Since the
code of ClassBench-ng is open, users can implement their
own version supporting a different set of fields. However, in
such a case they become fully responsible for generation of
individual fields as well as designing their representation in a
seed and controlling all dependencies among individual fields
in a rule. Modifying the set of supported fields is therefore
recommended to experienced users only.
Header Trace Generation Parameters. ClassBench-ng’s
Trace Generator primarily focuses on covering regions defined
by classification rules and their overlaps. It also allows to
replicate generated headers according to a user-defined distri-
bution, which can be used for modelling “elephants and mice
distribution” of size of network flows. However, in its current
version, ClassBench-ng does not contain any specific seeds for
this and it also does not implement their automatic extraction
from real-world traces. We consider these aspects a matter of
future work.
Network-Wide View on Packet Classification. When de-
signing ClassBench-ng, we have never explicitly considered
packet classification mechanisms that require network-wide
view [34], [35]. Therefore, the seeds we provide do not directly
support the generation of synthetic rule sets and header traces
for those mechanisms. However, using the appropriate input
seeds, Classbench-ng would be able to generate rule sets
and traffic traces to test those algorithms. This is because,
Classbench-ng internals are completely oblivious to the spe-
cific packet classification logic.

VII. RELATED WORK

In the absence of publicly available classification rule sets,
past researchers faced the problem of how to realistically
assess the performance of new packet classification algorithms.
While a limited number of research groups obtained access to
real rule sets through confidentiality agreements, others dealt
with frameworks for synthetic rule sets generation. In this
scenario, ClassBench [18] is the well known and commonly

used framework for IPv4 classification rules generation. So far,
it has been a very useful tool but it does not reflect anymore
current research community needs, as it focuses only on IPv4.

Sun et al. [20] responded to the increasing interest towards
IPv6 protocol proposing ClassBenchv6, a reshaped version of
the ClassBench framework for the IPv6 world. With a focus
on IPv6 lookup tables only, Wang et al. [33] developed new
algorithms for the synthetic generation of IPv6 forwarding
tables. Following this effort, Zheng et al. [36] developed a
scalable IPv6 prefix generator, called V6Gene, for IPv6-based
route lookup algorithms benchmarking.

With an eye towards new future protocols, Ganegedara et
al. [19] proposed FRuG, a generic synthetic rule generator. It
allows the user to select the protocol fields and the character-
istics of each field, which can either be defined by the user or
configured to follow a distribution from an input seed file. The
user has complete control over the structure and the size of
the rule table which makes it a powerful benchmark to assess
various packet forwarding algorithms and for different types
of routers. However, only MAC and IP addresses fields can be
set to follow an input distribution. The other OpenFlow-related
fields need to be manually configured by the user, making this
solution less attractive if a realistic set of synthetic rules needs
to be generated.

ClassBench-ng has been designed to provide the flexibility
of generating IPv4, IPv6, and OpenFlow rule sets. It accepts
an input seed file which can specify a distribution for all the
OpenFlow 1.0.0 matching fields, making this solution very
attractive when a realistic rule set generation is needed. This
may be the case not only for classification algorithms bench-
marking, but also for their training, as proposed by Rashelbach
et al. [37] and Liang et al. [38]. The detailed analysis
performed on real sets allows to include in the tool input seeds
that reflect the real world properties. In addition, the ability to
self-generate seeds from real sets allows to create a repository
for a number of seeds that reflect different scenarios, e.g., data
center, Internet Service Provider, or Internet eXchange Point.

VIII. CONCLUSION

This paper presents ClassBench-ng, a new open source tool
for the generation of synthetic IPv4, IPv6, and OpenFlow
classification rules alongside associated header trace matching
them. We analyzed real sets taken from backbone routers, edge
firewalls and cloud data centers to gain a better understanding
of the statistical properties of nowadays’ classification rules.
We used our insight to design specific input paramter files
that feed our generators. Furthermore, to make this solution
attractive in the long term and for a wide number of different
use cases, we upgraded our tool with the possibility of creating
input parameter files from real rule sets.

We aim to use the tool’s repository as a place where
researchers and operators can continuously upload new pa-
rameter files that match a number of different environments
or use cases, e.g., data center, Internet Service Provider,
Internet eXchange Point. We believe that this aspect will
further increase the impact of ClassBench-ng on the research
community.

TRANSACTIONS ON NETWORKING, VOL.XX, NO.XX, XX 14

REFERENCES

[1] J. Matoušek et al., “ClassBench-ng: Recasting ClassBench After a
Decade of Network Evolution,” in ANCS. IEEE, 2017, pp. 204–216.

[2] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Net-
works,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74,
Mar. 2008.

[3] J. Czyz et al., “Measuring IPv6 Adoption,” SIGCOMM Comput. Com-
mun. Rev., vol. 44, no. 4, pp. 87–98, Aug. 2014.

[4] “IPv6 – Google,” https://www.google.com/intl/en/ipv6/statistics.html.
[5] M. Bruyere et al., “Rethinking IXPs Architecture in the Age of SDN,”

IEEE J. Select. Areas Commun., vol. 36, no. 12, pp. 2667–2674, Dec.
2018.

[6] C.-Y. Hong et al., “Achieving High Utilization with Software-Driven
WAN,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 15–26,
Oct. 2013.

[7] ——, “B4 and after: Managing Hierarchy, Partitioning, and Asymmetry
for Availability and Scale in Googles Software-Defined WAN,” in
SIGCOMM. ACM, 2018, pp. 74–87.

[8] B. Schlinker et al., “Engineering Egress with Edge Fabric: Steering
Oceans of Content to the World,” in SIGCOMM. ACM, 2017, pp.
418–431.

[9] A. Singh et al., “Jupiter Rising: A Decade of Clos Topologies and Cen-
tralized Control in Googles Datacenter Network,” SIGCOMM Comput.
Commun. Rev., vol. 45, no. 4, pp. 183–197, Oct. 2015.

[10] D. E. Taylor, “Survey and Taxonomy of Packet Classification Tech-
niques,” ACM Comput. Surv., vol. 37, no. 3, pp. 238–275, Sep. 2005.

[11] Y. R. Qu, H. H. Zhang, S. Zhou, and V. K. Prasanna, “Optimizing
Many-field Packet Classification on FPGA, Multi-core General Purpose
Processor, and GPU,” in ANCS. IEEE, 2015, pp. 87–98.

[12] T. Yang et al., “Fast OpenFlow Table Lookup with Fast Update,” in
INFOCOM. IEEE, 2018, pp. 2636–2644.

[13] C.-L. Hsieh, N. Weng, and W. Wei, “Scalable Many-Field Packet
Classification for Traffic Steering in SDN Switches,” IEEE Trans. Netw.
Serv. Manage., vol. 16, no. 1, pp. 348–361, Mar. 2019.

[14] H. Alimohammadi and M. Ahmadi, “Clustering-based many-field packet
classification in Software-Defined Networking,” Journal of Network and
Computer Applications, vol. 147, p. 102428, Dec. 2019.

[15] P. Gupta and N. McKeown, “Packet Classification on Multiple Fields,”
SIGCOMM Comput. Commun. Rev., vol. 29, no. 4, pp. 147–160, Oct.
1999.

[16] H. Song and J. S. Turner, “ABC: Adaptive Binary Cuttings for Multidi-
mensional Packet Classification,” IEEE/ACM Trans. Networking, vol. 21,
no. 1, pp. 98–109, Feb. 2013.

[17] H. Lim et al., “Boundary Cutting for Packet Classification,” IEEE/ACM
Trans. Networking, vol. 22, no. 2, pp. 443–456, Apr. 2014.

[18] D. E. Taylor and J. S. Turner, “ClassBench: A Packet Classification
Benchmark,” IEEE/ACM Trans. Networking, vol. 15, no. 3, pp. 499–
511, Jun. 2007.

[19] T. Ganegedara, W. Jiang, and V. K. Prasanna, “FRuG: A Benchmark for
Packet Forwarding in Future Networks,” in IPCCC. IEEE, 2010, pp.
231–238.

[20] Q. Sun et al., “ClassBenchv6: An IPv6 Packet Classification Bench-
mark,” in GLOBECOM. IEEE, 2009, pp. 1–6.

[21] F. Baboescu, S. Singh, and G. Varghese, “Packet Classification for Core
Routers: Is there an alternative to CAMs?” in INFOCOM. IEEE, 2003,
pp. 53–63 vol.1.

[22] M. E. Kounavis et al., “Chapter 13 – Directions in Packet Classification
for Network Processors,” in Network Processor Design. Morgan
Kaufmann, 2004, vol. 2, pp. 273–298.

[23] Y. Qi et al., “Packet Classification Algorithms: From Theory to Practice,”
in INFOCOM. IEEE, 2009, pp. 648–656.

[24] “OpenFlow Switch Specification – Version 1.5.1,” https://www.
opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.
5.1.pdf.

[25] “University of Oregon Route Views Project,” http://www.routeviews.org/
routeviews.

[26] “RIS Raw Data,” https://www.ripe.net/analyse/internet-measurements/
routing-information-service-ris/ris-raw-data.

[27] “IPv4 address report,” http://www.potaroo.net/tools/ipv4.
[28] “IPv6 Deployment Status,” https://www.vyncke.org/ipv6status.
[29] “OpenFlow Switch Specification – Version 1.0.0,” https://www.

opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.
pdf.

[30] “Open vSwitch Manual: ovs-ofctl(8),” https://www.openvswitch.org/
support/dist-docs/ovs-ofctl.8.html.

[31] “Differentiated Services Field Codepoints (DSCP),” http://www.iana.
org/assignments/dscp-registry/dscp-registry.xhtml.

[32] “IEEE Standard for Local and Metropolitan Area Network–Bridges and
Bridged Networks,” IEEE Std 802.1Q-2018, pp. 1–1993, 2018.

[33] M. Wang, S. Deering, T. Hain, and L. Dunn, “Non-random Generator
for IPv6 Tables,” in HOTI. IEEE, 2004, pp. 35–40.

[34] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable Flow-Based
Networking with DIFANE,” SIGCOMM Comput. Commun. Rev., vol. 40,
no. 4, pp. 351–362, Aug. 2010.

[35] O. Rottenstreich et al., “Cooperative rule caching for sdn switches,” in
CloudNet. IEEE, 2020, pp. 1–7.

[36] K. Zheng and B. Liu, “V6Gene: A Scalable IPv6 Prefix Generator for
Route Lookup Algorithm Benchmark,” in AINA. IEEE, 2006, pp. 6
pp.–152.

[37] A. Rashelbach, O. Rottenstreich, and M. Silberstein, “A Computational
Approach to Packet Classification,” in SIGCOMM. ACM, 2020, pp.
542–556.

[38] E. Liang, H. Zhu, X. Jin, and I. Stoica, “Neural Packet Classification,”
in SIGCOMM. ACM, 2019, pp. 256–269.

Jiřı́ Matoušek is an assistant professor at the Fac-
ulty of Information Technology, Brno University
of Technology and a researcher at CESNET. He
received Bc. and Ing. (M.Eng.) degrees in Informa-
tion Technology and a Ph.D. degree in Computer
Science and Engineering from Brno University of
Technology in 2009, 2011, and 2019, respectively.
His research interests are centered around hardware-
accelerated regular expression matching and packet
classification for high-speed networks.

Adam Lučanský received a bachelor’s degree in Information Technology
from Brno University of Technology in 2017 and a master’s degree in System
Engineering and Informatics from Mendel University in Brno in 2020.

David Janeček received bachelor’s and master’s
degrees in Information Technology from Brno Uni-
versity of Technology in 2018 and 2020, respec-
tively. He is currently working on systems for public
transport at Mikroelektronika, spol. s r. o. as a .NET
software developer.

Jozef Sabo received bachelor’s and master’s degrees in Information Technol-
ogy from Brno University of Technology in 2019 and 2021, respectively.

Jan Kořenek is an associate professor at the Fac-
ulty of Information Technology, Brno University of
Technology and the head of a CESNET research
department focused on developing network security
tools. His research interests cover high-speed packet
processing and hardware acceleration of network
security and monitoring applications.

Gianni Antichi is a senior lecturer (associate pro-
fessor) at the School of Electronic Engineering and
Computer Science of Queen Mary University of
London. Dr Antichi holds an MEng and a PhD
in Information Engineering from the University of
Pisa defended in 2007 and 2011, respectively. His
research interests cover a broad spectrum of topics
in both networks and systems, ranging from end-host
stacks to programmable switching architectures.

