5,544 research outputs found

    Activation of native TRPC1/C5/C6 channels by endothelin-1 is mediated by both PIP3 and PIP2 in rabbit coronary artery myocytes

    Get PDF
    We investigate activation mechanisms of native TRPC1/C5/C6 channels (termed TRPC1 channels) by stimulation of endothelin-1 (ET-1) receptor subtypes in freshly dispersed rabbit coronary artery myocytes using single channel recording and immunoprecipitation techniques. ET-1 evoked non-selective cation channel currents with a unitary conductance of 2.6 pS which were not inhibited by either ET(A) or ET(B) receptor antagonists, respectively BQ-123 and BQ788, when administered separately. However, in the presence of both antagonists, ET-1-evoked channel activity was abolished indicating that both ET(A) and ET(B) receptor stimulation activate this conductance. Stimulation of both ET(A) and ET(B) receptors evoked channel activity which was inhibited by the protein kinase C (PKC) inhibitor chelerythrine and by anti-TRPC1 antibodies indicating that activation of both receptor subtypes causes TRPC1 channel activation by a PKC-dependent mechanism. ET(A) receptor-mediated TRPC1 channel activity was selectively inhibited by phosphoinositol-3-kinase (PI-3-kinase) inhibitors wortmannin (50 nm) and PI-828 and by antibodies raised against phosphoinositol-3,4,5-trisphosphate (PIP(3)), the product of PI-3-kinase-mediated phosphorylation of phosphatidylinositol 4,5-bisphosphate (PIP(2)). Moreover, exogenous application of diC8-PIP(3) stimulated PKC-dependent TRPC1 channel activity. These results indicate that stimulation of ET(A) receptors evokes PKC-dependent TRPC1 channel activity through activation of PI-3-kinase and generation of PIP(3). In contrast, ET(B) receptor-mediated TRPC1 channel activity was inhibited by the PI-phospholipase C (PI-PLC) inhibitor U73122. 1-Oleoyl-2-acetyl-sn-glycerol (OAG), an analogue of diacylglycerol (DAG), which is a product of PI-PLC, also activated PKC-dependent TRPC1 channel activity. OAG-induced TRPC1 channel activity was inhibited by anti-phosphoinositol-4,5-bisphosphate (PIP(2)) antibodies and high concentrations of wortmannin (20 μm) which depleted tissue PIP(2) levels. In addition exogenous application of diC8-PIP(2) activated PKC-dependent TRPC1 channel activity. These data indicate that stimulation of ET(B) receptors evokes PKC-dependent TRPC1 activity through PI-PLC-mediated generation of DAG and requires a permissive role of PIP(2). In conclusion, we provide the first evidence that stimulation of ET(A) and ET(B) receptors activate native PKC-dependent TRPC1 channels through two distinct phospholipids pathways involving a novel action of PIP(3), in addition to PIP(2), in rabbit coronary artery myocytes

    Obligatory role for phosphatidylinositol 4,5-bisphosphate in activation of native TRPC1 store-operated channels in vascular myocytes

    Get PDF
    In the present study the effect of phosphatidylinositol 4,5-bisphosphate (PIP2) was studied on a native TRPC1 store-operated channel (SOC) in freshly dispersed rabbit portal vein myocytes. Application of diC8-PIP2, a water soluble form of PIP2, to quiescent inside-out patches evoked single channel currents with a unitary conductance of 1.9 pS. DiC8-PIP2-evoked channel currents were inhibited by anti-TRPC1 antibodies and these characteristics are identical to SOCs evoked by cyclopiazonic acid (CPA) and BAPTA-AM. SOCs stimulated by CPA, BAPTA-AM and the phorbol ester phorbol 12,13-dibutyrate (PDBu) were reduced by anti-PIP2 antibodies and by depletion of tissue PIP2 levels by pre-treatment of preparations with wortmannin and LY294002. However, these reagents did not alter the ability of PIP2 to activate SOCs in inside-out patches. Co-immunoprecipitation techniques demonstrated association between TRPC1 and PIP2 at rest, which was greatly decreased by wortmannin and LY294002. Pre-treatment of cells with PDBu, which activates protein kinase C (PKC), augmented SOC activation by PIP2 whereas the PKC inhibitor chelerythrine decreased SOC stimulation by PIP2. Co-immunoprecipitation experiments provide evidence that PKC-dependent phosphorylation of TRPC1 occurs constitutively and was increased by CPA and PDBu but decreased by chelerythrine. These novel results show that PIP2 can activate TRPC1 SOCs in native vascular myocytes and plays an important role in SOC activation by CPA, BAPTA-AM and PDBu. Moreover, the permissive role of PIP2 in SOC activation requires PKC-dependent phosphorylation of TRPC1

    Store depletion induces Gαq-mediated PLCβ1 activity to stimulate TRPC1 channels in vascular smooth muscle cells.

    Get PDF
    Depletion of sarcoplasmic reticulum (SR) Ca(2+) stores activates store-operated channels (SOCs) composed of canonical transient receptor potential (TRPC) 1 proteins in vascular smooth muscle cells (VSMCs), which contribute to important cellular functions. We have previously shown that PKC is obligatory for activation of TRPC1 SOCs in VSMCs, and the present study investigates if the classic phosphoinositol signaling pathway involving Gαq-mediated PLC activity is responsible for driving PKC-dependent channel gating. The G-protein inhibitor GDP-β-S, anti-Gαq antibodies, the PLC inhibitor U73122, and the PKC inhibitor GF109203X all inhibited activation of TRPC1 SOCs, and U73122 and GF109203X also reduced store-operated PKC-dependent phosphorylation of TRPC1 proteins. Three distinct SR Ca(2+) store-depleting agents, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester, cyclopiazonic acid, and N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamineed, induced translocations of the fluorescent biosensor GFP-PLCδ1-PH from the cell membrane to the cytosol, which were inhibited by U73122. Knockdown of PLCβ1 with small hairpin RNA reduced both store-operated PLC activity and stimulation of TRPC1 SOCs. Immunoprecipitation studies and proximity ligation assays revealed that store depletion induced interactions between TRPC1 and Gαq, and TRPC1 and PLCβ1. We propose a novel activation mechanism for TRPC1 SOCs in VSMCs, in which store depletion induces formation of TRPC1-Gαq-PLCβ1 complexes that lead to PKC stimulation and channel gating.-Shi, J., Miralles, F., Birnbaumer, L., Large, W. A., Albert, A. P. Store depletion induces Gαq-mediated PLCβ1 activity to stimulate TRPC1 channels in vascular smooth muscle cells

    The ACPI Project, Element 1: Initializing a Coupled Climate Model from Observed Conditions

    Get PDF
    A problem for climate change studies with coupled ocean-atmosphere models has been how to incorporate observed initial conditions into the ocean, which holds most of the ‘memory’ of anthropogenic forcing effects. The first difficulty is the lack of comprehensive three-dimensional observations of the current ocean temperature (T) and salinity (S) fields to initialize to. The second problem is that directly imposing observed T and S fields into the model results in rapid drift back to the model climatology, with the corresponding loss of the observed information. Anthropogenic forcing scenarios therefore typically initialize future runs by starting with pre-industrial conditions. However, if the future climate depends on the details of the present climate, then initializing the model to observations may provide more accurate forecasts. Also, this ∼130 yr spin up imposes substantial overhead if only a few decades of predictions are desired. A new technique to address these problems is presented. In lieu of observed T and S, assimilated ocean data were used. To reduce model drift, an anomaly coupling scheme was devised. This consists of letting the model’s climatological (pre-industrial) oceanic and atmospheric heat contents and transports balance each other, while adding on the (much smaller) changes in heat content since the pre-industrial era as anomalies. The result is model drift of no more than 0.2 K over 50 years, significantly smaller than the forced response of 1.0 K. An ensemble of runs with these assimilated initial conditions is then compared to a set spun up from pre-industrial conditions. No systematic differences were found, i.e., the model simulation of the ocean temperature structure in the late 1990s is statistically indistinguishable from the assimilated observations. However, a model with a worse representation of the late 20th century climate might show significant differences if initialized in this way.This work was supported by the Department of Energy under grant DE-FG03– 98ER62505

    Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods

    Get PDF
    Background: Short-chain fatty acids (SCFAs), metabolites produced through the microbial fermentation of nondigestible dietary components, have key roles in energy homeostasis. Animal research suggests that colon-derived SCFAs modulate feeding behavior via central mechanisms. In humans, increased colonic production of the SCFA propionate acutely reduces energy intake. However, evidence of an effect of colonic propionate on the human brain or reward-based eating behavior is currently unavailable. Objectives: We investigated the effect of increased colonic propionate production on brain anticipatory reward responses during food picture evaluation. We hypothesized that elevated colonic propionate would reduce both reward responses and ad libitum energy intake via stimulation of anorexigenic gut hormone secretion. Design: In a randomized crossover design, 20 healthy nonobese men completed a functional magnetic resonance imaging (fMRI) food picture evaluation task after consumption of control inulin or inulin-propionate ester, a unique dietary compound that selectively augments colonic propionate production. The blood oxygen level–dependent (BOLD) signal was measured in a priori brain regions involved in reward processing, including the caudate, nucleus accumbens, amygdala, anterior insula, and orbitofrontal cortex (n = 18 had analyzable fMRI data). Results: Increasing colonic propionate production reduced BOLD signal during food picture evaluation in the caudate and nucleus accumbens. In the caudate, the reduction in BOLD signal was driven specifically by a lowering of the response to high-energy food. These central effects were partnered with a decrease in subjective appeal of high-energy food pictures and reduced energy intake during an ad libitum meal. These observations were not related to changes in blood peptide YY (PYY), glucagon-like peptide 1 (GLP-1), glucose, or insulin concentrations. Conclusion: Our results suggest that colonic propionate production may play an important role in attenuating reward-based eating behavior via striatal pathways, independent of changes in plasma PYY and GLP-1. This trial was registered at clinicaltrials.gov as NCT00750438

    Inhibition of native TRPC6 channel activity by phosphatidylinositol 4,5-bisphosphate in mesenteric artery myocytes

    Get PDF
    The present work investigates the effect of phosphatidylinositol-4,5-bisphosphate (PIP2) on native TRPC6 channel activity in freshly dispersed rabbit mesenteric artery myocytes using patch clamp recording and co-immunoprecipitation methods. Inclusion of 100 μm diC8-PIP2 in the patch pipette and bathing solutions, respectively, inhibited angiotensin II (Ang II)-evoked whole-cell cation currents and TRPC6 channel activity by over 90%. In inside-out patches diC8-PIP2 also inhibited TRPC6 activity induced by the diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) with an IC50 of 7.6 μm. Anti-PIP2 antibodies potentiated Ang II- and OAG-evoked TRPC6 activity by about 2-fold. Depleters of tissue PIP2 wortmannin and LY294002 stimulated TRPC6 activity, as did the polycation PIP2 scavenger poly-l-lysine. Wortmannin reduced Ang II-evoked TRPC6 activity by over 75% but increased OAG-induced TRPC6 activity by over 50-fold. Co-immunoprecipitation studies demonstrated association between PIP2 and TRPC6 proteins in tissue lysates. Pre-treatment with Ang II, OAG and wortmannin reduced TRPC6 association with PIP2. These results provide for the first time compelling evidence that constitutively produced PIP2 exerts a powerful inhibitory action on native TRPC6 channels

    Dietary Methionine Restriction Regulates Liver Protein Synthesis and Gene Expression Independently of Eukaryotic Initiation Factor 2 Phosphorylation in Mice

    Get PDF
    Background: The phosphorylation of eukaryotic initiation factor 2 (p-eIF2) during dietary amino acid insufficiency reduces protein synthesis and alters gene expression via the integrated stress response (ISR).Objective: We explored whether a Met-restricted (MR) diet activates the ISR to reduce body fat and regulate protein balance.Methods: Male and female mice aged 3-6 mo with either whole-body deletion of general control nonderepressible 2 (Gcn2) or liver-specific deletion of protein kinase R-like endoplasmic reticulum kinase (Perk) alongside wild-type or floxed control mice were fed an obesogenic diet sufficient in Met (0.86%) or an MR (0.12% Met) diet for ≤5 wk. Ala enrichment with deuterium was measured to calculate protein synthesis rates. The guanine nucleotide exchange factor activity of eIF2B was measured alongside p-eIF2 and hepatic mRNA expression levels at 2 d and 5 wk. Metabolic phenotyping was conducted at 4 wk, and body composition was measured throughout. Results were evaluated with the use of ANOVA (P < 0.05).Results: Feeding an MR diet for 2 d did not increase hepatic p-eIF2 or reduce eIF2B activity in wild-type or Gcn2-/- mice, yet many genes transcriptionally regulated by the ISR were altered in both strains in the same direction and amplitude. Feeding an MR diet for 5 wk increased p-eIF2 and reduced eIF2B activity in wild-type but not Gcn2-/- mice, yet ISR-regulated genes altered in both strains similarly. Furthermore, the MR diet reduced mixed and cytosolic but not mitochondrial protein synthesis in both the liver and skeletal muscle regardless of Gcn2 status. Despite the similarities between strains, the MR diet did not increase energy expenditure or reduce body fat in Gcn2-/- mice. Finally, feeding the MR diet to mice with Perk deleted in the liver increased hepatic p-eIF2 and altered body composition similar to floxed controls.Conclusions: Hepatic activation of the ISR resulting from an MR diet does not require p-eIF2. Gcn2 status influences body fat loss but not protein balance when Met is restricted

    Identification of the Maize Gravitropism Gene \u3ci\u3elazy plant1\u3c/i\u3e by a Transposon-Tagging Genome Resequencing Strategy

    Get PDF
    Since their initial discovery, transposons have been widely used as mutagens for forward and reverse genetic screens in a range of organisms. The problems of high copy number and sequence divergence among related transposons have often limited the efficiency at which tagged genes can be identified. A method was developed to identity the locations of Mutator (Mu) transposons in the Zea mays genome using a simple enrichment method combined with genome resequencing to identify transposon junction fragments. The sequencing library was prepared from genomic DNA by digesting with a restriction enzyme that cuts within a perfectly conserved motif of the Mu terminal inverted repeats (TIR). Paired-end reads containing Mu TIR sequences were computationally identified and chromosomal sequences flanking the transposon were mapped to the maize reference genome. This method has been used to identify Mu insertions in a number of alleles and to isolate the previously unidentified lazy plant1 (la1) gene. The la1 gene is required for the negatively gravitropic response of shoots and mutant plants lack the ability to sense gravity. Using bioinformatic and fluorescence microscopy approaches, we show that the la1 gene encodes a cell membrane and nuclear localized protein. Our Mu-Taq method is readily adaptable to identify the genomic locations of any insertion of a known sequence in any organism using any sequencing platform

    Vitamin D status of Irish adults: findings from the National Adult Nutrition Survey

    Get PDF
    Previous national nutrition surveys in Irish adults did not include blood samples; thus, representative serum 25-hydroxyvitamin D (25(OH)D) data are lacking. In the present study, we characterised serum 25(OH)D concentrations in Irish adults from the recent National Adult Nutrition Survey, and determined the impact of vitamin D supplement use and season on serum 25(OH)D concentrations. Of the total representative sample (n 1500, aged 18+ years), blood samples were available for 1132 adults. Serum 25(OH)D was measured via immunoassay. Vitamin D-containing supplement use was assessed by questionnaire and food diary. Concentrations of serum 25(OH)D were compared by season and in supplement users and non-users. Year-round prevalence rates for serum 25(OH)D concentration 125 nmol/l. These first nationally representative serum 25(OH)D data for Irish adults show that while only 6·7 % had serum 25(OH)D < 30 nmol/l (vitamin D deficiency) throughout the year, 40·1 % had levels considered by the Institute of Medicine as being inadequate for bone health. These prevalence estimates were much higher during winter time. While vitamin D supplement use has benefits in terms of vitamin D status, at present rates of usage (17·5 % of Irish adults), it will have only very limited impact at a population level. Food-based strategies, including fortified foods, need to be explored
    • …
    corecore