576 research outputs found

    Nanowires for Room-Temperature Mid-Infrared Emission

    Get PDF
    InAs-based nanowires hold a promise to offer transformational technologies for infrared photonic applications. Site-controlled InAs nanowire growth on low-cost Si substrates offers the practical integration advantages that silicon photonics benefits from. This includes the realisation of cheap photonic circuitries, light emitters and detectors that are otherwise expensive to realise with III/V material-based substrates. This chapter details the growth development of advanced faceted multi-quantum well structures within InAs nanowires using molecular beam epitaxy. We review the crystal structure for the faceted quantum wells along with an analysis of their optical emission characteristics which shows quantum confinement and localisation of the carriers on the quantum well nanostructure. This enables tuning of the emission wavelength and enhanced emission intensity up to the technologically important room-temperature operation point

    A noninvasive multi-analyte diagnostic assay: Combining protein and DNA markers to stratify bladder cancer patients

    Get PDF
    Purpose: The authors recently reported the development of a noninvasive diagnostic assay using urinary matrix metalloproteinases (MMPs) as monitors of disease-free status and bladder cancer in high-risk populations. Using an approach called clinical intervention determining diagnostic (CIDD), they identified with high confidence those patients who could be excluded from additional intervention. To maximize performance, MMPs were combined with DNAbased markers and CIDD was applied to a population of patients undergoing monitoring for recurrence. Patients and methods: Urine samples were obtained from 323 patients, 48 of whom had a recurrence and 275 of whom did not have cancer upon cytoscopic evaluation. Twist1 and Nid2 methylation status was determined using methylation-specific polymerase chain reaction, FGFR3 mutational status by quantitative PCR, and MMP levels by enzyme-linked immunosorbent assay. Results: Using a combination of these DNA and protein markers, the authors identified with high confidence (97% negative predicted value) those patients who do not have cancer. Cutoffs were adjusted such that at 92% sensitivity, 51% of disease-free patients might be triaged from receiving further tests. Conclusion: The multi-analyte diagnostic readout assay described here is the first to combine protein and DNA biomarkers into one assay for optimal clinical performance. Using this approach, the detection of FGFR3 mutations and Twist1 and Nid2 methylation in the urine of patients undergoing bladder cancer recurrence screening increase the sensitivity and negative predictive value at an established MMP protein cutoff. This noninvasive urinary diagnostic assay could lead to the more efficient triage of patients undergoing recurrence monitoring

    A real quaternion spherical ensemble of random matrices

    Full text link
    One can identify a tripartite classification of random matrix ensembles into geometrical universality classes corresponding to the plane, the sphere and the anti-sphere. The plane is identified with Ginibre-type (iid) matrices and the anti-sphere with truncations of unitary matrices. This paper focusses on an ensemble corresponding to the sphere: matrices of the form \bY= \bA^{-1} \bB, where \bA and \bB are independent N×NN\times N matrices with iid standard Gaussian real quaternion entries. By applying techniques similar to those used for the analogous complex and real spherical ensembles, the eigenvalue jpdf and correlation functions are calculated. This completes the exploration of spherical matrices using the traditional Dyson indices β=1,2,4\beta=1,2,4. We find that the eigenvalue density (after stereographic projection onto the sphere) has a depletion of eigenvalues along a ring corresponding to the real axis, with reflective symmetry about this ring. However, in the limit of large matrix dimension, this eigenvalue density approaches that of the corresponding complex ensemble, a density which is uniform on the sphere. This result is in keeping with the spherical law (analogous to the circular law for iid matrices), which states that for matrices having the spherical structure \bY= \bA^{-1} \bB, where \bA and \bB are independent, iid matrices the (stereographically projected) eigenvalue density tends to uniformity on the sphere.Comment: 25 pages, 3 figures. Added another citation in version

    Crkva sv. Križa u Križevcima

    Get PDF
    When invasive species become integrated within a food web, they may have numerous direct and indirect impacts on the native community by creating novel trophic links, and modifying or disrupting existing ones. Here we discuss these impacts by drawing on examples from freshwater ecosystems, and argue that future research should quantify changes in such trophic interactions (i.e. the links in a food web), rather than simply focusing on traditional measures of diversity or abundance (i.e. the nodes in a food web). We conceptualise the impacts of invaders on trophic links as either direct consumption, indirect trophic effects (e.g. cascading interactions, competition) or indirect nontrophic effects (e.g. behaviour mediated). We then discuss how invader impacts on trophic links are context-dependent, varying with invader traits (e.g. feeding rates), abiotic variables (e.g. temperature, pH) and the traits of the receiving community (e.g. predators or competitors). Co-occurring invasive species and other environmental stressors, such as climate change, will also influence invader impacts on trophic links. Finally, we discuss the available methods to identify new food web interactions following invasion and to quantify how invasive species disrupt existing feeding links. Methods include direct observations in the field, laboratory trials (e.g. to quantify functional responses) and controlled mesocosm experiments to elucidate impacts on food webs. Field studies which use tracer techniques, such as stable isotope analyses, allow diet characterisation of both invaders and interacting native species in the wild. We conclude that invasive species often drastically alter food webs by creating and disrupting trophic links, and future research should be directed particularly towards disentangling the effects of invaders from other environmental stressors

    Nuclear shadowing in polarized DIS on ^6LiD at small x and its effect on the extraction of the deuteron spin structure function g_{1}^{d}(x,Q^2)

    Get PDF
    We consider the effect of nuclear shadowing in polarized deep inelastic scattering (DIS) on ^6LiD at small Bjorken x and its relevance to the extraction of the deuteron spin structure function g_{1}^{d}(x,Q^2). Using models, which describe nuclear shadowing in unpolarized DIS, we demonstrate that the nuclear shadowing correction to g_{1}^{d}(x,Q^2) is significant.Comment: 17 pages, 2 figure

    A-dependence of nuclear transparency in quasielastic A(e,e'p) at high Q^2

    Get PDF
    The A-dependence of the quasielastic A(e,e'p) reaction has been studied at SLAC with H-2, C, Fe, and Au nuclei at momentum transfers Q^2 = 1, 3, 5, and 6.8 (GeV/c)^2. We extract the nuclear transparency T(A,Q^2), a measure of the average probability that the struck proton escapes from the nucleus A without interaction. Several calculations predict a significant increase in T with momentum transfer, a phenomenon known as Color Transparency. No significant rise within errors is seen for any of the nuclei studied.Comment: 5 pages incl. 2 figures, Caltech preprint OAP-73

    The Hamiltonian limit of (3+1)D SU(3) lattice gauge theory on anisotropic lattices

    Get PDF
    The extreme anisotropic limit of Euclidean SU(3) lattice gauge theory is examined to extract the Hamiltonian limit, using standard path integral Monte Carlo (PIMC) methods. We examine the mean plaquette and string tension and compare them to results obtained within the Hamiltonian framework of Kogut and Susskind. The results are a significant improvement upon previous Hamiltonian estimates, despite the extrapolation procedure necessary to extract observables. We conclude that the PIMC method is a reliable method of obtaining results for the Hamiltonian version of the theory. Our results also clearly demonstrate the universality between the Hamiltonian and Euclidean formulations of lattice gauge theory. It is particularly important to take into account the renormalization of both the anisotropy, and the Euclidean coupling βE \beta_E , in obtaining these results.Comment: 10 pages, 11 figure

    Measurement of the Neutron Spin Structure Function g1ng_1^n with a Polarized ^3He Target

    Get PDF
    Results are reported from the HERMES experiment at HERA on a measurement of the neutron spin structure function g1n(x,Q2)g_1^n(x,Q^2) in deep inelastic scattering using 27.5 GeV longitudinally polarized positrons incident on a polarized 3^3He internal gas target. The data cover the kinematic range 0.023<x<0.60.023<x<0.6 and 1(GeV/c)2<Q2<15(GeV/c)21 (GeV/c)^2 < Q^2 <15 (GeV/c)^2. The integral 0.0230.6g1n(x)dx\int_{0.023}^{0.6} g_1^n(x) dx evaluated at a fixed Q2Q^2 of 2.5(GeV/c)22.5 (GeV/c)^2 is 0.034±0.013(stat.)±0.005(syst.)-0.034\pm 0.013(stat.)\pm 0.005(syst.). Assuming Regge behavior at low xx, the first moment Γ1n=01g1n(x)dx\Gamma_1^n=\int_0^1 g_1^n(x) dx is 0.037±0.013(stat.)±0.005(syst.)±0.006(extrapol.)-0.037\pm 0.013(stat.)\pm 0.005(syst.)\pm 0.006(extrapol.).Comment: 4 pages TEX, text available at http://www.krl.caltech.edu/preprints/OAP.htm

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
    corecore