32 research outputs found

    Gelsolin Restores Aβ-Induced Alterations in Choroid Plexus Epithelium

    Get PDF
    Histologically, Alzheimer's disease (AD) is characterized by senile plaques and cerebrovascular amyloid deposits. In previous studies we demonstrated that in AD patients, amyloid-β (Aβ) peptide also accumulates in choroid plexus, and that this process is associated with mitochondrial dysfunction and epithelial cell death. However, the molecular mechanisms underlying Aβ accumulation at the choroid plexus epithelium remain unclear. Aβ clearance, from the brain to the blood, involves Aβ carrier proteins that bind to megalin, including gelsolin, a protein produced specifically by the choroid plexus epithelial cells. In this study, we show that treatment with gelsolin reduces Aβ-induced cytoskeletal disruption of blood-cerebrospinal fluid (CSF) barrier at the choroid plexus. Additionally, our results demonstrate that gelsolin plays an important role in decreasing Aβ-induced cytotoxicity by inhibiting nitric oxide production and apoptotic mitochondrial changes. Taken together, these findings make gelsolin an appealing tool for the prophylactic treatment of AD

    Potential role of aminoprocalcitonin in the pathogenesis of alzheimer disease

    Get PDF
    Increasing evidence suggests that inflammatory responses cause brain atrophy and play a prominent and early role in the progression of Alzheimer disease. Recent findings show that the neuroendocrine peptide aminoprocalcitonin (NPCT) plays a critical role in the development of systemic inflammatory response; however, the presence, possible function, regulation, and mechanisms by which NPCT may be involved in Alzheimer disease neuropathology remain unknown. We explored the expression of NPCT and its interaction with amyloid-b (Ab), and proinflammatory and neurogenic effects. By using brain samples of Alzheimer disease patients and APP/PS1 transgenic mice, we evaluated the potential role of NPCT on Ab-related pathology. We found that NPCT is expressed in hippocampal and cortical neurons and Ab-induced up-regulation of NPCT expression. Peripherally administered antibodies against NPCT decreased microglial activation, decreased circulating levels of proinflammatory cytokines, and prevented Ab-induced neurotoxicity in experimental models of Alzheimer disease. Remarkably, anti-NPTC therapy resulted in a significant improvement in the behavioral status of APP/PS1 mice. Our results indicate a central role of NPCT in Alzheimer disease pathogenesis and suggest NPCT as a potential biomarker and therapeutic target

    Amyloid-β impairs mitochondrial dynamics and autophagy in Alzheimer's disease experimental models

    Get PDF
    The most accepted hypothesis in Alzheimer's disease (AD) is the amyloid cascade which establishes that Aβ accumulation may induce the disease development. This accumulation may occur years before the clinical symptoms but it has not been elucidated if this accumulation is the cause or the consequence of AD. It is however, clear that Aβ accumulation exerts toxic effects in the cerebral cells. It is important then to investigate all possible associated events that may help to design new therapeutic strategies to defeat or ameliorate the symptoms in AD. Alterations in the mitochondrial physiology have been found in AD but it is not still clear if they could be an early event in the disease progression associated to amyloidosis or other conditions. Using APP/PS1 mice, our results support published evidence and show imbalances in the mitochondrial dynamics in the cerebral cortex and hippocampus of these mice representing very early events in the disease progression. We demonstrate in cellular models that these imbalances are consequence of Aβ accumulation that ultimately induce increased mitophagy, a mechanism which selectively removes damaged mitochondria by autophagy. Along with increased mitophagy, we also found that Aβ independently increases autophagy in APP/PS1 mice. Therefore, mitochondrial dysfunction could be an early feature in AD, associated with amyloid overload.This study was supported by Grants from Instituto de Salud Carlos III (PI18/00118; PI21/00183; CP20/00007), FEDER, Comunidad de Madrid (S2017/BMD-3700; NEUROMETAB-CM), and CIBERNED (CB07/502). In addition FW was supported by grants from ISCIII-CIBERNED (CB06/05/0067) and I+D+i-RETOS- RTI2018-096303-B.S

    Differentially Aquaporin 5 Expression in Submandibular Glands and Cerebral Cortex in Alzheimer’s Disease

    Get PDF
    Impaired brain clearance mechanisms may result in the accumulation of aberrant proteins that define Alzheimer's disease (AD). The water channel protein astrocytic aquaporin 4 (AQP4) is essential for brain amyloid-beta clearance, but it is known to be abnormally expressed in AD brains. The expression of AQPs is differentially regulated during diverse brain injuries, but, whereas AQP4 expression and function have been studied in AD, less is known about AQP5. AQP5 functions include not only water transport but also cell migration mediated by cytoskeleton regulation. Moreover, AQP5 has been reported to be expressed in astrocytes, which are regulated after ischemic and traumatic injury. Additionally, AQP5 is particularly abundant in the salivary glands suggesting that it may be a crucial factor in gland dysfunction associated with AD. Herein, we aim to determine whether AQP5 expression in submandibular glands and the brain was altered in AD. First, we demonstrated impaired AQP5 expression in submandibular glands in APP/PS1 mice and AD patients. Subsequently, we observed that AQP5 expression was upregulated in APP/PS1 cerebral cortex and confirmed its expression both in astrocytes and neurons. Our findings propose AQP5 as a significant role player in AD pathology, in addition to AQP4, representing a potential target for the treatment of AD

    Endothelial-specific deficiency of megalin in the brain protects mice against high-fat diet challenge

    Get PDF
    Background: The increasing risk of obesity and diabetes among other metabolic disorders are the consequence of shifts in dietary patterns with high caloric-content food intake. We previously reported that megalin regulates energy homeostasis using blood-brain barrier (BBB) endothelial megalin-deficient (EMD) mice, since these animals developed obesity and metabolic syndrome upon normal chow diet administration. Obesity in mid-life appears to be related to greater dementia risk and represents an increasing global health issue. We demonstrated that EMD phenotype induced impaired learning ability and recognition memory, neurodegeneration, neuroinflammation, reduced neurogenesis, and mitochondrial deregulation associated with higher mitochondrial mass in cortical tissue

    Increased YKL-40 but Not C-Reactive Protein Levels in Patients with Alzheimer’s Disease

    Get PDF
    Neuroinflammation is a common feature in Alzheimer's (AD) and Parkinson's (PD) disease. In the last few decades, a testable hypothesis was proposed that protein-unfolding events might occur due to neuroinflammatory cascades involving alterations in the crosstalk between glial cells and neurons. Here, we tried to clarify the pattern of two of the most promising biomarkers of neuroinflammation in cerebrospinal fluid (CSF) in AD and PD. This study included cognitively unimpaired elderly patients, patients with mild cognitive impairment, patients with AD dementia, and patients with PD. CSF samples were analyzed for YKL-40 and C-reactive protein (CRP). We found that CSF YKL-40 levels were significantly increased only in dementia stages of AD. Additionally, increased YKL-40 levels were found in the cerebral orbitofrontal cortex from AD patients in agreement with augmented astrogliosis. Our study confirms that these biomarkers of neuroinflammation are differently detected in CSF from AD and PD patients

    Annexin A5 prevents amyloid-β-induced toxicity in choroid plexus: implication for Alzheimer’s disease

    Get PDF
    In Alzheimer's disease (AD) amyloid-beta (A beta) deposits may cause impairments in choroid plexus, a specialised brain structure which forms the blood-cerebrospinal fluid (CSF) barrier. We previously carried out a mass proteomic-based study in choroid plexus from AD patients and we found several differentially regulated proteins compared with healthy subjects. One of these proteins, annexin A5, was previously demonstrated implicated in blocking A beta -induced cytotoxicity in neuronal cell cultures. Here, we investigated the effects of annexin A5 on A beta toxicity in choroid plexus. We used choroid plexus tissue samples and CSF from mild cognitive impairment (MCI) and AD patients to analyse A beta accumulation, cell death and annexin A5 levels compared with control subjects. Choroid plexus cell cultures from rats were used to analyse annexin A5 effects on A beta -induced cytotoxicity. AD choroid plexus exhibited progressive reduction of annexin A5 levels along with progressive increased A beta accumulation and cell death as disease stage was higher. On the other hand, annexin A5 levels in CSF from patients were found progressively increased as the disease stage increased in severity. In choroid plexus primary cultures, A beta administration reduced endogenous annexin A5 levels in a time-course dependent manner and simultaneously increased annexin A5 levels in extracellular medium. Annexin A5 addition to choroid plexus cell cultures restored the A beta -induced impairments on autophagy flux and apoptosis in a calcium-dependent manner. We propose that annexin A5 would exert a protective role in choroid plexus and this protection is lost as A beta accumulates with the disease progression. Then, brain protection against further toxic insults would be jeopardised

    Saliva levels of Abeta1-42 as potential biomarker of Alzheimer's disease: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Simple, non-invasive tests for early detection of degenerative dementia by use of biomarkers are urgently required. However, up to the present, no validated extracerebral diagnostic markers for the early diagnosis of Alzheimer disease (AD) are available. The clinical diagnosis of probable AD is made with around 90% accuracy using modern clinical, neuropsychological and imaging methods. A biochemical marker that would support the clinical diagnosis and distinguish AD from other causes of dementia would therefore be of great value as a screening test. A total of 126 samples were obtained from subjects with AD, and age-sex-matched controls. Additionally, 51 Parkinson's disease (PD) patients were used as an example of another neurodegenerative disorder. We analyzed saliva and plasma levels of β amyloid (Aβ) using a highly sensitive ELISA kit.</p> <p>Results</p> <p>We found a small but statistically significant increase in saliva Aβ<sub>42 </sub>levels in mild AD patients. In addition, there were not differences in saliva concentration of Aβ<sub>42 </sub>between patients with PD and healthy controls. Saliva Aβ<sub>40 </sub>expression was unchanged within all the studied sample. The association between saliva Aβ<sub>42 </sub>levels and AD was independent of established risk factors, including age or Apo E, but was dependent on sex and functional capacity.</p> <p>Conclusions</p> <p>We suggest that saliva Aβ<sub>42 </sub>levels could be considered a potential peripheral marker of AD and help discrimination from other types of neurodegenerative disorders. We propose a new and promising biomarker for early AD.</p
    corecore