1,480 research outputs found

    SPECTRAL ANALYSIS OF MOIRÉ IMAGES

    Get PDF
    The signal-to-noise ratio of moiré images is quite low. Obtaining useful information from an image can often be probiematic, since the contrast of the grid giving rise to the moiré phenomena is similar to the contrast of the moiré fringes that carry the useful information. By using optical filtering techniques it is possible to filter these images real-time. In this paper the authors give an example of an algorithm to design an appropriate spatial filter by comparing the Fourier spectra of a mathematical model of a moiré image with a real moiré image

    TCP over High Speed Variable Capacity Links: A Simulation Study for Bandwidth Allocation

    Get PDF
    New optical network technologies provide opportunities for fast, controllable bandwidth management. These technologies can now explicitly provide resources to data paths, creating demand driven bandwidth reservation across networks where an applications bandwidth needs can be meet almost exactly. Dynamic synchronous Transfer Mode (DTM) is a gigabit network technology that provides channels with dynamically adjustable capacity. TCP is a reliable end-to-end transport protocol that adapts its rate to the available capacity. Both TCP and the DTM bandwidth can react to changes in the network load, creating a complex system with inter-dependent feedback mechanisms. The contribution of this work is an assessment of a bandwidth allocation scheme for TCP flows on variable capacity technologies. We have created a simulation environment using ns-2 and our results indicate that the allocation of bandwidth maximises TCP throughput for most flows, thus saving valuable capacity when compared to a scheme such as link over-provisioning. We highlight one situation where the allocation scheme might have some deficiencies against the static reservation of resources, and describe its causes. This type of situation warrants further investigation to understand how the algorithm can be modified to achieve performance similar to that of the fixed bandwidth case

    Magnetization distribution in the transverse Ising chain with energy flux

    Full text link
    The zero-temperature transverse Ising chain carrying an energy flux j_E is studied with the aim of determining the nonequilibrium distribution functions, P(M_z) and P(M_x), of its transverse and longitudinal magnetizations, respectively. An exact calculation reveals that P(M_z) is a Gaussian both at j_E=0 and j_E not equal 0, and the width of the distribution decreases with increasing energy flux. The distribution of the order-parameter fluctuations, P(M_x), is evaluated numerically for spin-chains of up to 20 spins. For the equilibrium case (j_E=0), we find the expected Gaussian fluctuations away from the critical point while the critical order-parameter fluctuations are shown to be non-gaussian with a scaling function Phi(x)=Phi(M_x/)=P(M_x) strongly dependent on the boundary conditions. When j_E not equal 0, the system displays long-range, oscillating correlations but P(M_x) is a Gaussian nevertheless, and the width of the Gaussian decreases with increasing j_E. In particular, we find that, at critical transverse field, the width has a j_E^(-3/8) asymptotic in the j_E -> 0 limit.Comment: 8 pages, 5 ps figure

    Molecular Spiders in One Dimension

    Full text link
    Molecular spiders are synthetic bio-molecular systems which have "legs" made of short single-stranded segments of DNA. Spiders move on a surface covered with single-stranded DNA segments complementary to legs. Different mappings are established between various models of spiders and simple exclusion processes. For spiders with simple gait and varying number of legs we compute the diffusion coefficient; when the hopping is biased we also compute their velocity.Comment: 14 pages, 2 figure

    Reduced fusarium toxin by peritec technology

    Get PDF
    We modelled the PeriTec technology with a laboratory size, batch-operating, horizontal debranning machine by SATAKE. Applying different treatment times we varied the rate of debranning. As for DON toxin contamination, a continuous decrease can be found by increasing the rate of debranning. The total flour obtained during grinding the unpolished wheat contains 0.25 mg/kg toxin on average, which decreases to 0.11 mg/kg if we apply the highest, 40s polishing. During our work we focused mainly on the toxin contamination of the grains and their milling products, as well as on other characteristics that are important with regard to milling processing. As a result of debranning, the toxin content of the grinding fractions decreased, which justifies that the PeriTec method is suitable for the reduction of toxin contamination. On the basis of the experimental results, the optimum peeling was the peeling which resulted in a weight loss of about 6%, the toxin content significantly decreased (from1,59 mg/kg to 0,94 mg/kg)

    Derivation of the Matalon-Packter law for Liesegang patterns

    Full text link
    Theoretical models of the Liesegang phenomena are studied and simple expressions for the spacing coefficients characterizing the patterns are derived. The emphasis is on displaying the explicit dependences on the concentrations of the inner- and the outer-electrolytes. Competing theories (ion-product supersaturation, nucleation and droplet growth, induced sol- coagulation) are treated with the aim of finding the distinguishing features of the theories. The predictions are compared with experiments and the results suggest that the induced sol-coagulation theory is the best candidate for describing the experimental observations embodied in the Matalon-Packter law.Comment: 9 pages, 7 figures, RevTe

    Steady-state selection in driven diffusive systems with open boundaries

    Full text link
    We investigate the stationary states of one-dimensional driven diffusive systems, coupled to boundary reservoirs with fixed particle densities. We argue that the generic phase diagram is governed by an extremal principle for the macroscopic current irrespective of the local dynamics. In particular, we predict a minimal current phase for systems with local minimum in the current--density relation. This phase is explained by a dynamical phenomenon, the branching and coalescence of shocks, Monte-Carlo simulations confirm the theoretical scenario.Comment: 6 pages, 5 figure
    • 

    corecore