183 research outputs found

    MEMS 411: Remotely Operated Rock Collecting Vehicle

    Get PDF
    We were tasked with designing a remote-controlled vehicle that is capable of collecting and holding “rocks”. The device had to be battery powered and operated by an RC transmitter/receiver. The physical constraints required the vehicle to fit within the designated 5.25’’ diameter and 8.5’’ long cylinder. The goal was to maximize the number of rocks collected in 5 minutes

    Detection of pediatric upper extremity motor activity and deficits with accelerometry

    Get PDF
    Importance: Affordable, quantitative methods to screen children for developmental delays are needed. Motor milestones can be an indicator of developmental delay and may be used to track developmental progress. Accelerometry offers a way to gather real-world information about pediatric motor behavior. Objective: To develop a referent cohort of pediatric accelerometry from bilateral upper extremities (UEs) and determine whether movement can accurately distinguish those with and without motor deficits. Design, Setting, and Participants: Children aged 0 to 17 years participated in a prospective cohort from December 8, 2014, to December 29, 2017. Children were recruited from Ranken Jordan Pediatric Bridge Hospital, Maryland Heights, Missouri, and Washington University School of Medicine in St Louis, St Louis, Missouri. Typically developing children were included as a referent cohort if they had no history of motor or neurological deficit; consecutive sampling and matching ensured equal representation of sex and age. Children with diagnosed asymmetric motor deficits were included in the motor impaired cohort. Exposures: Bilateral UE motor activity was measured using wrist-worn accelerometers for a total of 100 hours in 25-hour increments. Main Outcomes and Measures: To characterize bilateral UE motor activity in a referent cohort for the purpose of detecting irregularities in the future, total activity and the use ratio between UEs were used to describe typically developing children. Asymmetric impairment was classified using the mono-arm use index (MAUI) and bilateral-arm use index (BAUI) to quantify the acceleration of unilateral movements. Results: A total of 216 children enrolled, and 185 children were included in analysis. Of these, 156 were typically developing, with mean (SD) age 9.1 (5.1) years and 81 boys (52.0%). There were 29 children in the motor impaired cohort, with mean (SD) age 7.4 (4.4) years and 16 boys (55.2%). The combined MAUI and BAUI (mean [SD], 0.86 [0.005] and use ratio (mean [SD], 0.90 [0.008]) had similar F1 values. The area under the curve was also similar between the combined MAUI and BAUI (mean [SD], 0.98 [0.004]) and the use ratio (mean [SD], 0.98 [0.004]). Conclusions and Relevance: Bilateral UE movement as measured with accelerometry may provide a meaningful metric of real-world motor behavior across childhood. Screening in early childhood remains a challenge; MAUI may provide an effective method for clinicians to measure and visualize real-world motor behavior in children at risk for asymmetrical deficits

    New g'r'i'z' Photometry of the NGC 5128 Globular Cluster System

    Full text link
    We present new photometry for 323 of the globular clusters in NGC 5128 (Centaurus A), measured for the first time in the grizg'r'i'z' filter system. The color indices are calibrated directly to standard stars in the grizg'r'i'z' system and are used to establish the fiducial mean colors for the blue and red (low and high metallicity) globular cluster sequences. We also use spectroscopically measured abundances to establish the conversion between the most metallicity-sensitive colors ((gr)0(g'-r')_0, (gi)0(g'-i')_0) and metallicity, [Fe/H].Comment: 14 pages, 9 figures, accepted in A

    Controlled fabrication of nanoscale gaps using stiction

    Get PDF
    Utilizing stiction, a common failure mode in micro/nano electromechanical systems (M/NEMS), we propose a method for the controlled fabrication of nanometer-thin gaps between electrodes. In this approach, a single lithography step is used to pattern cantilevers that undergo lateral motion towards opposing stationary electrodes separated by a defined gap. Upon wet developing of the pattern, capillary forces induce cantilever deflection and collapse leading to permanent adhesion between the tip and an opposing support structure. The deflection consequently reduces the separation gap between the cantilever and the electrodes neighboring the point of stiction to dimensions smaller than originally patterned. Through nanoscale force control achieved by altering device design, we demonstrate the fabrication of nanogaps having controlled widths smaller than 15 nm. We further discuss optimization of these nanoscale gaps for applications in NEM and molecular devices.National Science Foundation (U.S.) (Center for Energy Efficient Electronics Science (E3S) Award ECCS-0939514)Natural Sciences and Engineering Research Council of Canad

    Subcomponent self-assembly of circular helical Dy6_{6}(L)6_{6} and bipyramid Dy12_{12}(L)8_{8} architectures directed via second-order template effects

    Get PDF
    In situ metal-templated (hydrazone) condensation also called subcomponent self-assembly of 4,6-dihydrazino-pyrimidine, o-vanillin and dysprosium ions resulted in the formation of discrete hexa- or dodecanuclear metallosupramolecular Dy6_{6}(L)6_{6} or Dy12_{12}(L)8_{8} aggregates resulting from second-order template effects of the base and the lanthanide counterions used in these processes. XRD analysis revealed unique circular helical or tetragonal bipyramid architectures in which the bis(hydrazone) ligand L adopts different conformations and shows remarkable differences in its mode of metal coordination. While a molecule of trimethylamine acts as a secondary template that fills the void of the Dy6_{6}(L)6_{6} assembly, sodium ions take on this role for the formation of heterobimetallic Dy12_{12}(L)8_{8} by occupying vacant coordination sites, thus demonstrating that these processes can be steered in different directions upon subtle changes of reaction conditions. Furthermore, Dy6_{6}(L)6_{6} shows an interesting spin-relaxation energy barrier of 435 K, which is amongst the largest values within multinuclear lanthanide single-molecular magnets

    PHANGS CO kinematics: disk orientations and rotation curves at 150 pc resolution

    Full text link
    We present kinematic orientations and high resolution (150 pc) rotation curves for 67 main sequence star-forming galaxies surveyed in CO (2-1) emission by PHANGS-ALMA. Our measurements are based on the application of a new fitting method tailored to CO velocity fields. Our approach identifies an optimal global orientation as a way to reduce the impact of non-axisymmetric (bar and spiral) features and the uneven spatial sampling characteristic of CO emission in the inner regions of nearby galaxies. The method performs especially well when applied to the large number of independent lines-of-sight contained in the PHANGS CO velocity fields mapped at 1'' resolution. The high resolution rotation curves fitted to these data are sensitive probes of mass distribution in the inner regions of these galaxies. We use the inner slope as well as the amplitude of our fitted rotation curves to demonstrate that CO is a reliable global dynamical mass tracer. From the consistency between photometric orientations from the literature and kinematic orientations determined with our method, we infer that the shapes of stellar disks in the mass range of log(M(M)\rm M_{\star}(M_{\odot}))=9.0-10.9 probed by our sample are very close to circular and have uniform thickness.Comment: 19 figures, 36 pages, accepted for publication in ApJ. Table of PHANGS rotation curves available from http://phangs.org/dat

    The headlight cloud in NGC 628: An extreme giant molecular cloud in a typical galaxy disk

    Get PDF
    Context. Cloud-scale surveys of molecular gas reveal the link between giant molecular cloud properties and star formation across a range of galactic environments. Cloud populations in galaxy disks are considered to be representative of the normal star formation process, while galaxy centers tend to harbor denser gas that exhibits more extreme star formation. At high resolution, however, molecular clouds with exceptional gas properties and star formation activity may also be observed in normal disk environments. In this paper we study the brightest cloud traced in CO(2-1) emission in the disk of nearby spiral galaxy NGC 628. Aims. We characterize the properties of the molecular and ionized gas that is spatially coincident with an extremely bright H ii region in the context of the NGC 628 galactic environment. We investigate how feedback and large-scale processes influence the properties of the molecular gas in this region. Methods. High-resolution ALMA observations of CO(2-1) and CO(1−0) emission were used to characterize the mass and dynamical state of the 'headlight' molecular cloud. The characteristics of this cloud are compared to the typical properties of molecular clouds in NGC 628. A simple large velocity gradient (LVG) analysis incorporating additional ALMA observations of 13CO(1−0), HCO+(1−0), and HCN(1−0) emission was used to constrain the beam-diluted density and temperature of the molecular gas. We analyzed the MUSE spectrum using Starburst99 to characterize the young stellar population associated with the H ii region. Results. The unusually bright headlight cloud is massive (1−2 x 107 M), with a beam-diluted density of nH2 = 5 x 104 cm−3 based on LVG modeling. It has a low virial parameter, suggesting that the CO emission associated with this cloud may be overluminous due to heating by the H ii region. A young (2−4 Myr) stellar population with mass 3 x105 M is associated. Conclusions. We argue that the headlight cloud is currently being destroyed by feedback from young massive stars. Due to the large mass of the cloud, this phase of the its evolution is long enough for the impact of feedback on the excitation of the gas to be observed. The high mass of the headlight cloud may be related to its location at a spiral co-rotation radius, where gas experiences reduced galactic shear compared to other regions of the disk and receives a sustained inflow of gas that can promote the mass growth of the cloud.CNH, AH and JP acknowledge support from the Programme National “Physique et Chimie du Milieu Interstellaire” (PCMI) of CNRS/INSU with INC/INP co-funded by CEA and CNES, and from the Programme National Cosmology and Galaxies (PNCG) of CNRS/INSU with INP and IN2P3, co-funded by CEA and CNES. AU acknowledges support from the Spanish funding grants AYA2016-79006-P (MINECO/FEDER) and PGC2018-094671-B-I00 (MCIU/AEI/FEDER). The work of AKL, JS, and DU is partially supported by the National Science Foundation under Grants No. 1615105, 1615109, and 1653300. FB acknowledges funding from the European Union’s Horizon 2020 research and innovation programme (grant agreement No 726384). APSH is a fellow of the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg (IMPRSHD). SCOG acknowledges support from the DFG via SFB 881 “The Milky Way System” (sub-projects B1, B2 and B8). JMDK gratefully acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme via the ERC Starting Grant MUSTANG (grant agreement number 714907). JMDK and MC gratefully acknowledge funding from the German Research Foundation (DFG) in the form of an Emmy Noether Research Group (grant number KR4801/1-1). SEM acknowledges funding during part of this work from the Deutsche Forschungsgemeinschaft (DFG) via grant SCHI 536/7-2 as part of the priority program SPP 1573 “ISM-SPP: Physics of the Interstellar Medium”

    PHANGS CO Kinematics: Disk Orientations and Rotation Curves at 150 pc Resolution

    Get PDF
    We present kinematic orientations and high-resolution (150 pc) rotation curves for 67 main-sequence star-forming galaxies surveyed in CO (2-1) emission by PHANGS-ALMA. Our measurements are based on the application of a new fitting method tailored to CO velocity fields. Our approach identifies an optimal global orientation as a way to reduce the impact of nonaxisymmetric (bar and spiral) features and the uneven spatial sampling characteristic of CO emission in the inner regions of nearby galaxies. The method performs especially well when applied to the large number of independent lines of sight contained in the PHANGS CO velocity fields mapped at 1'' resolution. The high-resolution rotation curves fitted to these data are sensitive probes of mass distribution in the inner regions of these galaxies. We use the inner slope as well as the amplitude of our fitted rotation curves to demonstrate that CO is a reliable global dynamical mass tracer. From the consistency between photometric orientations from the literature and kinematic orientations determined with our method, we infer that the shapes of stellar disks in the mass range of log(M(M){M}_{\star }({M}_{\odot })) = 9.0-10.9 probed by our sample are very close to circular and have uniform thickness.P.L., E.S., C.F., and D.L. acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 694343). E.R. acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), funding reference number RGPIN-2017- 03987. J.M.D.K. and M.C. gratefully acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) through an Emmy Noether Research Group (grant No. KR4801/1-1) and the DFG Sachbeihilfe (grant No. KR4801/2-1). J.M.D.K. gratefully acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program via the ERC Starting Grant MUSTANG (grant agreement No. 714907). S.C.O.G. acknowledges support from the Deutsche Forschungsgemeinschaft via SFB 881 “The Milky Way System” (Project-ID 138713538; subprojects B1, B2, and B8) and via Germany’s Excellence Strategy EXC 2181/1-390900948 (the Heidelberg STRUCTURES Excellence Cluster). C.H., A.H., and J.P. acknowledge support from the Programme National “Physique et Chimie du Milieu Interstellaire” (PCMI) of CNRS/INSU with INC/INP co-funded by CEA and CNES, and from the Programme National Cosmology and Galaxies (PNCG) of CNRS/INSU with INP and IN2P3, co-funded by CEA and CNES. J.P. and F.B. acknowledge funding from the European Union’s Horizon 2020 research and innovation program (grant agreement No. 726384
    corecore