320 research outputs found

    Smartwatch-Based IoT Fall Detection Application

    Get PDF
    This paper proposes using only the streaming accelerometer data from a commodity-based smartwatch (IoT) device to detect falls. The smartwatch is paired with a smartphone as a means for performing the computation necessary for the prediction of falls in realtime without incurring latency in communicating with a cloud server while also preserving data privacy. The majority of current fall detection applications require specially designed hardware and software which make them expensive and inaccessible to the general public. Moreover, a fall detection application that uses a wrist worn smartwatch for data collection has the added benefit that it can be perceived as a piece of jewelry and thus non-intrusive. We experimented with both Support Vector Machine and Naive Bayes machine learning algorithms for the creation of the fall model. We demonstrated that by adjusting the sampling frequency of the streaming data, computing acceleration features over a sliding window, and using a Naive Bayes machine learning model, we can obtain the true positive rate of fall detection in real-world setting with 93.33% accuracy. Our result demonstrated that using a commodity-based smartwatch sensor can yield fall detection results that are competitive with those of custom made expensive sensors

    Single-Molecule Real-Time (SMRT) Full-Length RNA-Sequencing Reveals Novel and Distinct mRNA Isoforms in Human Bone Marrow Cell Subpopulations.

    Get PDF
    Hematopoietic cells are continuously replenished from progenitor cells that reside in the bone marrow. To evaluate molecular changes during this process, we analyzed the transcriptomes of freshly harvested human bone marrow progenitor (lineage-negative) and differentiated (lineage-positive) cells by single-molecule real-time (SMRT) full-length RNA-sequencing. This analysis revealed a ~5-fold higher number of transcript isoforms than previously detected and showed a distinct composition of individual transcript isoforms characteristic for bone marrow subpopulations. A detailed analysis of messenger RNA (mRNA) isoforms transcribed from the ANXA1 and EEF1A1 loci confirmed their distinct composition. The expression of proteins predicted from the transcriptome analysis was evaluated by mass spectrometry and validated previously unknown protein isoforms predicted e.g., for EEF1A1. These protein isoforms distinguished the lineage negative cell population from the lineage positive cell population. Finally, transcript isoforms expressed from paralogous gene loci (e.g., CFD, GATA2, HLA-A, B, and C) also distinguished cell subpopulations but were only detectable by full-length RNA sequencing. Thus, qualitatively distinct transcript isoforms from individual genomic loci separate bone marrow cell subpopulations indicating complex transcriptional regulation and protein isoform generation during hematopoiesis

    Socio-economic costs of bereavement in Scotland: main study report.

    Get PDF
    The Socio-Economic Costs of Bereavement in Scotland (SECOB) research study was funded by the Scottish Government Health Directorates in late 2010 as part of ongoing work to inform national policy on bereavement and bereavement care practice. The project aimed to: a) articulate the likely nature and scope of the impact of bereavement on social and economic aspects of life for Scottish citizens as evidenced in relevant literature; b) seek to estimate the socio-economic costs of bereavement in an emergent sub-set of key aspects, and c) develop methodological approaches that will enhance capacity for large-scale research into the socio-economic impact of bereavement

    Pneumococcal Gene Complex Involved in Resistance to Extracellular Oxidative Stress

    Get PDF
    Streptococcus pneumoniae is a Gram-positive bacterium which is a member of the normal human nasopharyngeal flora but can also cause serious disease such as pneumonia, bacteremia, and meningitis. Throughout its life cycle, S. pneumoniae is exposed to significant oxidative stress derived from endogenously produced hydrogen peroxide (H2O2) and from the host through the oxidative burst. How S. pneumoniae, an aerotolerant anaerobic bacterium that lacks catalase, protects itself against hydrogen peroxide stress is still unclear. Bioinformatic analysis of its genome identified a hypothetical open reading frame belonging to the thiol-specific antioxidant (TlpA/TSA) family, located in an operon consisting of three open reading frames. For all four strains tested, deletion of the gene resulted in an approximately 10-fold reduction in survival when strains were exposed to external peroxide stress. However, no role for this gene in survival of internal superoxide stress was observed. Mutagenesis and complementation analysis demonstrated that all three genes are necessary and sufficient for protection against oxidative stress. Interestingly, in a competitive index mouse pneumonia model, deletion of the operon had no impact shortly after infection but was detrimental during the later stages of disease. Thus, we have identified a gene complex involved in the protection of S. pneumoniae against external oxidative stress, which plays an important role during invasive disease.

    The economic cost of bereavement in Scotland.

    Get PDF
    Aspects of the socioeconomic costs of bereavement in Scotland were estimated using 3 sets of data. Spousal bereavement was associated with increased mortality and longer hospital stays, with additional annual cost of around {pound}20 million. Cost of bereavement coded consultations in primary care was estimated at around {pound}2.0 million annually. In addition, bereaved people were significantly less likely to be employed in the year of and 2 years after bereavement than non-bereaved matched controls, but there were no significant differences in income between bereaved people and matched controls before and after bereavement

    Glycogen Synthase Kinase (GSK) 3β phosphorylates and protects nuclear myosin 1c from proteasome-mediated degradation to activate rDNA transcription in early G1 cells

    Get PDF
    Nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by facilitating PCAF-mediated H3K9 acetylation, but the molecular mechanism by which NM1 is regulated remains unclear. Here, we report that at early G1 the glycogen synthase kinase (GSK) 3β phosphorylates and stabilizes NM1, allowing for NM1 association with the chromatin. Genomic analysis by ChIP-Seq showed that this mechanism occurs on the rDNA as active GSK3β selectively occupies the gene. ChIP assays and transmission electron microscopy in GSK3β-/- mouse embryonic fibroblasts indicated that at G1 rRNA synthesis is suppressed due to decreased H3K9 acetylation leading to a chromatin state incompatible with transcription. We found that GSK3β directly phosphorylates the endogenous NM1 on a single serine residue (Ser-1020) located within the NM1 C-terminus. In G1 this phosphorylation event stabilizes NM1 and prevents NM1 polyubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3β-mediated phosphorylation of NM1 is required for pol I transcription activation

    High Throughput Microplate Respiratory Measurements Using Minimal Quantities Of Isolated Mitochondria

    Get PDF
    Recently developed technologies have enabled multi-well measurement of O2 consumption, facilitating the rate of mitochondrial research, particularly regarding the mechanism of action of drugs and proteins that modulate metabolism. Among these technologies, the Seahorse XF24 Analyzer was designed for use with intact cells attached in a monolayer to a multi-well tissue culture plate. In order to have a high throughput assay system in which both energy demand and substrate availability can be tightly controlled, we have developed a protocol to expand the application of the XF24 Analyzer to include isolated mitochondria. Acquisition of optimal rates requires assay conditions that are unexpectedly distinct from those of conventional polarography. The optimized conditions, derived from experiments with isolated mouse liver mitochondria, allow multi-well assessment of rates of respiration and proton production by mitochondria attached to the bottom of the XF assay plate, and require extremely small quantities of material (1–10 µg of mitochondrial protein per well). Sequential measurement of basal, State 3, State 4, and uncoupler-stimulated respiration can be made in each well through additions of reagents from the injection ports. We describe optimization and validation of this technique using isolated mouse liver and rat heart mitochondria, and apply the approach to discover that inclusion of phosphatase inhibitors in the preparation of the heart mitochondria results in a specific decrease in rates of Complex I-dependent respiration. We believe this new technique will be particularly useful for drug screening and for generating previously unobtainable respiratory data on small mitochondrial samples
    corecore