35 research outputs found

    Activation of PKR by Bunyamwera virus is independent of the viral interferon antagonist NSs

    Get PDF
    Double-stranded RNA (dsRNA) is a by-product of viral RNA polymerase activity, and its recognition is one mechanism by which the innate immune system is activated. Cellular responses to dsRNA include induction of alpha/beta interferon (IFN) synthesis and activation of the enzyme PKR, which exerts its antiviral effect by phosphorylating the eukaryotic initiation factor eIF-2 alpha, thereby inhibiting translation. We have recently identified the nonstructural protein NSs of Bunyamwera virus (BUNV), the prototype of the family Bunyaviridae, as a virulence factor that blocks the induction of IFN by dsRNA. Here, we investigated the potential of NSs to inhibit PKR. We show that wild-type (wt) BUNV that expresses NSs triggered PKR-dependent phosphorylation of eIF-2 alpha to levels similar to those of a recombinant virus that does not express NSs (BUNdelNSs virus). Furthermore, the sensitivity of viruses in cell culture to IFN was independent of PKR and was not determined by NSs. PKR knockout mice, however, succumbed to infection approximately 1 day earlier than wt mice or mice deficient in expression of RNase L, another dsRNA-activated antiviral enzyme. Our data indicate that (i) bunyaviruses activate PKR, but are only marginally sensitive to its antiviral effect, and (ii) NSs is different from other IFN antagonists, since it inhibits dsRNA-dependent IFN induction but has no effect on the dsRNA-activated PKR and RNase L systems

    Inhibition of Interferon Induction and Action by the Nairovirus Nairobi Sheep Disease Virus/Ganjam Virus

    Get PDF
    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU

    Enhancing epidemiological surveillance of the emergence of the SARS-CoV-2 Omicron variant using spike gene target failure data, England, 15 November to 31 December 2021

    Get PDF
    When SARS-CoV-2 Omicron emerged in 2021, S gene target failure enabled differentiation between Omicron and the dominant Delta variant. In England, where S gene target surveillance (SGTS) was already established, this led to rapid identification (within ca 3 days of sample collection) of possible Omicron cases, alongside real-time surveillance and modelling of Omicron growth. SGTS was key to public health action (including case identification and incident management), and we share applied insights on how and when to use SGTS

    Medial longitudinal arch development of school children : The College of Podiatry Annual Conference 2015: meeting abstracts

    Get PDF
    Background Foot structure is often classified into flat foot, neutral and high arch type based on the variability of the Medial Longitudinal Arch (MLA). To date, the literature provided contrasting evidence on the age when MLA development stabilises in children. The influence of footwear on MLA development is also unknown. Aim This study aims to (i) clarify whether the MLA is still changing in children from age 7 to 9 years old and (ii) explore the relationship between footwear usage and MLA development, using a longitudinal approach. Methods We evaluated the MLA of 111 healthy school children [age = 6.9 (0.3) years] using three parameters [arch index (AI), midfoot peak pressure (PP) and maximum force (MF: % of body weight)] extracted from dynamic foot loading measurements at baseline, 10-month and 22-month follow-up. Information on the type of footwear worn was collected using survey question. Linear mixed modelling was used to test for differences in the MLA over time. Results Insignificant changes in all MLA parameters were observed over time [AI: P = .15; PP: P = .84; MF: P = .91]. When gender was considered, the AI of boys decreased with age [P = .02]. Boys also displayed a flatter MLA than girls at age 6.9 years [AI: mean difference = 0.02 (0.01, 0.04); P = .02]. At baseline, subjects who wore close-toe shoes displayed the lowest MLA overall [AI/PP/MF: P < .05]. Subjects who used slippers when commencing footwear use experienced higher PP than those who wore sandals [mean difference = 31.60 (1.44, 61.75) kPa; post-hoc P = .04]. Discussion and conclusion Our findings suggested that the MLA of children remained stable from 7 to 9 years old, while gender and the type of footwear worn during childhood may influence MLA development. Clinicians may choose to commence therapy when a child presents with painful flexible flat foot at age 7 years, and may discourage younger children from wearing slippers when they commence using footwear

    Effects of a point mutation in the 3 ' end of the S genome segment of naturally occurring and engineered Bunyamwera viruses

    No full text
    The genome of Bunyamwera virus (BUN) consists of three segments of single-stranded RNA of negative polarity. The smallest segment, S, encodes the N protein and a nonstructural protein called NSs. We recently described a mutant virus (BUNdelNSs) that does not express NSs but overexpresses N and grows to lower titres than wild-type (wt) BUN. Here we report a BUNdelNSs variant that expresses lower levels of N protein and grows to higher titres. Sequencing of the 3β€² and 5β€² termini of the BUNdelNSs S RNA segment and analysis using a minireplicon system show that the N overexpressing phenotype results from a single nucleotide substitution at position 16 in the 3β€² terminus. This mutation could also be detected in wtBUN populations, and was isolated by plaquing a β€˜wt’ variant carrying the mutation. This variant was found to express increased N and NSs levels, and grew to lower titres than wtBUN

    GV and NSDV inhibit the induction of expression from IFN-responsive promoters.

    No full text
    <p>Vero cells were transfected with 500 ng pJATLacZ and (a) 500 ng pGL3-Mx-1-luc or (b) pGAS-luc. 30 hours post transfection cells were infected with GV or NSDV at an MOI of 1 or left uninfected. 18 hours post infection cells were treated for 6 hours with IFNΞ± (a) or IFNΞ³ (b), lysed, and the luciferase and Ξ²-galactosidase activities determined. Results from two (for IFNΞ±) or three (for IFNΞ³) separate experiments were combined by setting the RLUs induced by IFNΞ± or IFNΞ³ in uninfected cells to 100%; all experiments were performed in triplicate wells. Error bars show standard errors of the normalised data.</p
    corecore