17 research outputs found

    Twenty year fitness trends in young adults and incidence of prediabetes and diabetes: the CARDIA study

    Get PDF
    The prospective association between cardiorespiratory fitness (CRF) measured in young adulthood and middle age on development of prediabetes, defined as impaired fasting glucose and/or impaired glucose tolerance, or diabetes by middle age remains unknown. We hypothesised that higher fitness levels would be associated with reduced risk for developing incident prediabetes/diabetes by middle age

    A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans

    Full text link
    BACKGROUND: High fructose consumption is suspected to be causally linked to the epidemics of obesity and metabolic disorders. In rodents, fructose leads to insulin resistance and ectopic lipid deposition. In humans, the effects of fructose on insulin sensitivity remain debated, whereas its effect on ectopic lipids has never been investigated. OBJECTIVE: We assessed the effect of moderate fructose supplementation on insulin sensitivity (IS) and ectopic lipids in healthy male volunteers (n = 7). DESIGN: IS, intrahepatocellular lipids (IHCL), and intramyocellular lipids (IMCL) were measured before and after 1 and 4 wk of a high-fructose diet containing 1.5 g fructose . kg body wt(-1) . d(-1). Adipose tissue IS was evaluated from nonesterified fatty acid suppression, hepatic IS from suppression of hepatic glucose output (6,6-2H2-glucose), and muscle IS from the whole-body glucose disposal rate during a 2-step hyperinsulinemic euglycemic clamp. IHCL and IMCL were measured by 1H magnetic resonance spectroscopy. RESULTS: Fructose caused significant (P < 0.05) increases in fasting plasma concentrations of triacylglycerol (36%), VLDL-triacylglycerol (72%), lactate (49%), glucose (5.5%), and leptin (48%) without any significant changes in body weight, IHCL, IMCL, or IS. IHCL were negatively correlated with triacylglycerol after 4 wk of the high-fructose diet (r = -0.78, P < 0.05). CONCLUSION: Moderate fructose supplementation over 4 wk increases plasma triacylglycerol and glucose concentrations without causing ectopic lipid deposition or insulin resistance in healthy humans

    Association of Mediterranean diet and cardiorespiratory fitness with the development of pre-diabetes and diabetes: the Coronary Artery Risk Development in Young Adults (CARDIA) study

    No full text
    Objective To better understand the association between a modified Mediterranean diet pattern in young adulthood, cardiorespiratory fitness in young adulthood, and the odds of developing pre-diabetes or diabetes by middle age. Research design and methods Participants from the Coronary Artery Risk Development in Young Adults (CARDIA) study who did not have pre-diabetes or diabetes at baseline (year 0 (Y0), ages 18–30) and who had data available at the Y0 and year 25 (Y25) visits were included in this analysis (n=3358). Polytomous logistic regression models were used to assess the association between baseline dietary intake and fitness data and odds of pre-diabetes or diabetes by middle age (Y25, ages 43–55). Results At the Y25 visit, 1319 participants (39%) had pre-diabetes and 393 (12%) had diabetes. Higher baseline fitness was associated with lower odds of pre-diabetes and of diabetes at Y25. After adjustment for covariates, each SD increment in treadmill duration (181 s) was associated with lower odds for pre-diabetes (OR 0.85, 95% CI 0.75 to 0.95, p=0.005) and for diabetes (OR 0.71, 95% CI 0.60 to 0.85, p=0.0002) when compared to normal glycemia. A modified Mediterranean diet pattern was not associated with either pre-diabetes or diabetes. No interaction between cardiorespiratory fitness and dietary intake was observed, but baseline fitness remained independently associated with incident pre-diabetes and diabetes following adjustment for diet. Conclusions Higher cardiorespiratory fitness in young adulthood, but not a modified Mediterranean diet pattern, is associated with lower odds of pre-diabetes and of diabetes in middle age. Trial registration number NCT00005130

    VE/VCO2 slope in lean and overweight women and its relationship to lean leg mass

    No full text
    Ventilation/carbon dioxide production (VE/VCO2slope) is used clinically to determine cardiorespiratory fitness and morbidity in heart failure (HF). Previously, we demonstrated that lower lean leg mass is associated with high VE/VCO2slope during exercise in HF. In healthy individuals, we evaluated 1) whether VE/VCO2slope differed between lean and overweight women and 2) the relationship between lean leg mass and VE/VCO2slope in overweight sedentary (OWS), overweight trained (OWTR) and lean, trained (LTR) women. Methods: Gas exchange and ventilation were collected during a treadmill peak oxygen uptake test (VO2peak) in 40 women [26 OWS (29 ± 7 yrs., mean ± SD), 7 OWTR (33 ± 5 yrs) and 7 LTR (26 ± 6 yrs)]. Body composition was measured by dual X-ray absorptiometry. Results: VO2peak was highest in LTR (46.6 ± 8 ml/kg/min) compared with OWTR (38.1 ± 4.9 ml/kg/min) and OWS women (25.3 ± 4.8 ml/kg/min, p  0.05). Higher lean leg mass was associated with lower VE/VCO2slope in overweight women (OWS + OWTR: r = −0.55, p < 0.001), contrasting with higher VE/VCO2slope in LTR women (r = 0.86, p < 0.001). Conclusions: These findings suggest VE/VCO2slope may not differentiate between low and high cardiorespiratory fitness in healthy individuals and muscle mass may play a role in determining the VE/VCO2slope, independent of disease. Keywords: Ventilatory efficiency, Body composition, Peak VO2, VE/VCO2slope, Obesit

    The impact of high BMI on acute changes in body composition following 90 min of running

    No full text
    Objectives: Although physical activity ameliorates the metabolic impact of high body mass index (BMI), runners with BMI ≥25 kg/m2 are relatively understudied. This study had two goals: (1) to identify differences in body composition, as measured by dual X-ray absorptiometry (DXA), between overweight (BMI ≥ 25 kg/m2) runners (OWR) and normal weight (BMI < 25 kg/m2) runners (NWR) and (2) to examine whether a 90-min run alters total or regional fat mass, as measured by DXA, in OWR and NWR. We hypothesized that OWR would have higher total body fat than NWR and OWR with greater changes in visceral fat after a prolonged run. Design: Body composition analysis before and after a supervised run. Methods: We recruited NWR (n = 16, F: n = 7, 28.1 ± 1.4 years, BMI 22.0 ± 0.4 kg/m2, results as mean ± SE) and OWR (n = 11, F: n = 7, 32.0 ± 1.6 years, BMI 30.5 ± 1.4 kg/m2) participants. DXA-based body composition was measured before and after a supervised, 90-min run at 60% heart rate reserve. Results: OWR had higher body fat than NWR in all measured regions. Both groups did not significantly reduce fat mass at any measured fat depots after the running exposure. Conclusions: OWR had higher body fat in all measured regions than NWR. DXA could not demonstrate any acute fat mass changes after a prolonged run

    The impact of high BMI on acute changes in body composition following 90 min of running

    No full text
    <p>Objectives: Although physical activity ameliorates the metabolic impact of high body mass index (BMI), runners with BMI ≥25 kg/m<sup>2</sup> are relatively understudied. This study had two goals: (1) to identify differences in body composition, as measured by dual X-ray absorptiometry (DXA), between overweight (BMI ≥ 25 kg/m<sup>2</sup>) runners (OWR) and normal weight (BMI < 25 kg/m<sup>2</sup>) runners (NWR) and (2) to examine whether a 90-min run alters total or regional fat mass, as measured by DXA, in OWR and NWR. We hypothesized that OWR would have higher total body fat than NWR and OWR with greater changes in visceral fat after a prolonged run. Design: Body composition analysis before and after a supervised run. Methods: We recruited NWR (<i>n</i> = 16, F: <i>n</i> = 7, 28.1 ± 1.4 years, BMI 22.0 ± 0.4 kg/m<sup>2</sup>, results as mean ± SE) and OWR (<i>n</i> = 11, F: <i>n</i> = 7, 32.0 ± 1.6 years, BMI 30.5 ± 1.4 kg/m<sup>2</sup>) participants. DXA-based body composition was measured before and after a supervised, 90-min run at 60% heart rate reserve. Results: OWR had higher body fat than NWR in all measured regions. Both groups did not significantly reduce fat mass at any measured fat depots after the running exposure. Conclusions: OWR had higher body fat in all measured regions than NWR. DXA could not demonstrate any acute fat mass changes after a prolonged run.</p

    Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes

    Full text link
    BACKGROUND: Both nutritional and genetic factors are involved in the pathogenesis of nonalcoholic fatty liver disease and insulin resistance. OBJECTIVE: The aim was to assess the effects of fructose, a potent stimulator of hepatic de novo lipogenesis, on intrahepatocellular lipids (IHCLs) and insulin sensitivity in healthy offspring of patients with type 2 diabetes (OffT2D)--a subgroup of individuals prone to metabolic disorders. DESIGN: Sixteen male OffT2D and 8 control subjects were studied in a crossover design after either a 7-d isocaloric diet or a hypercaloric high-fructose diet (3.5 g x kg FFM(-1) x d(-1), +35% energy intake). Hepatic and whole-body insulin sensitivity were assessed with a 2-step hyperinsulinemic euglycemic clamp (0.3 and 1.0 mU x kg(-1) x min(-1)), together with 6,6-[2H2]glucose. IHCLs and intramyocellular lipids (IMCLs) were measured by 1H-magnetic resonance spectroscopy. RESULTS: The OffT2D group had significantly (P < 0.05) higher IHCLs (+94%), total triacylglycerols (+35%), and lower whole-body insulin sensitivity (-27%) than did the control group. The high-fructose diet significantly increased IHCLs (control: +76%; OffT2D: +79%), IMCLs (control: +47%; OffT2D: +24%), VLDL-triacylglycerols (control: +51%; OffT2D: +110%), and fasting hepatic glucose output (control: +4%; OffT2D: +5%). Furthermore, the effects of fructose on VLDL-triacylglycerols were higher in the OffT2D group (group x diet interaction: P < 0.05). CONCLUSIONS: A 7-d high-fructose diet increased ectopic lipid deposition in liver and muscle and fasting VLDL-triacylglycerols and decreased hepatic insulin sensitivity. Fructose-induced alterations in VLDL-triacylglycerols appeared to be of greater magnitude in the OffT2D group, which suggests that these individuals may be more prone to developing dyslipidemia when challenged by high fructose intakes. This trial was registered at clinicaltrials.gov as NCT00523562
    corecore