15 research outputs found

    Mechanisms of action of 5α- tetrahydrocorticosterone, a novel anti-inflammatory glucocorticoid

    Get PDF
    Topical glucocorticoids (GCs), such as hydrocortisone (HC), are the main drugs used to treat inflammatory skin conditions including eczema and psoriasis, but their longterm use is limited by the onset of side effects such as skin thinning, impairment of wound healing and systemic metabolic dysfunction. For this reason, there is a substantial need for new compounds with the same anti-inflammatory effects but fewer adverse effects. Previous studies have suggested 5α-tetrahydrocorticosterone (5α-THB) as a new, more selective anti-inflammatory compound; this steroid is a metabolite of the major endogenous GC in rodents, corticosterone (B). Preliminary data indicated that 5α-THB may be as effective as HC in reducing mouse irritant dermatitis, but without the local or systemic side effects of HC. The aim of this thesis is to investigate the mechanisms through which 5α-THB delivers more selective anti-inflammatory effects, with the hypothesis that 5α-THB influences distinct signalling pathways from those of B. A mouse model of irritant dermatitis induced by topical application of croton oil on the ear was developed, and the anti-inflammatory properties of 5α-THB were analysed, in comparison with those of B, after 6 and 24 hours of treatment. In inflamed tissue, B reduced tissue oedema and cell infiltration at both time points; in contrast, 5α-THB did so at 24 but not 6 hours, at a dose five-fold higher than B. Real-time analysis at 24 hours showed that B and 5α-THB similarly reduced the croton oil-induced increase of transcripts of genes encoding vascular and cellular adhesion molecules. Interestingly, while B did not affect the abundance of transcripts of the anti-inflammatory gene Dusp1, 5α-THB increased it in croton oil-treated ears, suggesting a different mechanism of action between 5α-THB and B. The experiment was repeated with the injection of the glucocorticoid receptor (GR) antagonist RU486; RU486 relieved the effect of B on swelling but did not attenuate the anti-inflammatory effects of 5α-THB, indicating a further important difference between the two steroids. Angiogenesis is fundamental for the healing process, and it is known that topical GCs impair wound healing in part by inhibiting angiogenesis; for this reason, the effects of 5α-THB on the formation of new vessels, in comparison with B, were tested in a mouse model of inflammatory angiogenesis induced by sub-cutaneous implantation of polyurethane sponges. 5α-THB, at equipotent doses to B for the reduction of macrophage infiltration, inhibited angiogenesis to a lesser extent than its precursor. In addition, B had systemic effects in that it lowered adrenal gland weights, whereas 5α-THB did not. Histological analysis suggested that while B inhibits formation and maturation of new vessels, 5α-THB may affect only the former process. Molecular analysis showed that B reduced the abundance of transcripts of the majority of the tested genes involved in inflammation, angiogenesis and tissue remodelling, but 5α-THB had more selective effects. Ex vivo studies in mouse bone marrow-derived macrophages stimulated with LPS showed that 5α-THB inhibited release of pro-inflammatory cytokines in a weaker manner compared with B. This inhibition was partially prevented by co-incubation of RU486 with B but not with 5α-THB. In in vitro studies, molecular pathways activated by B and associated with adverse side effects were only weakly activated by 5α-THB. In particular, 5α-THB only weakly induced phosphorylation of GR, and activation of expression of GC-responsive reporter plasmids and endogenous metabolic genes. Interestingly, 5α-THB reduced B-induced trans-activation of some of these genes. In summary, 5α-THB effectively reduces skin inflammation, but, unlike B, has only moderate anti-angiogenic properties, and weakly activates molecular mechanisms associated with adverse metabolic side effects. Most importantly, its action may not be due to activation of GR. This work opens the intriguing possibility that GCs work through mechanisms not yet investigated, and this may be of pivotal importance in the search for new safer anti-inflammatory compounds

    Discovering the most elusive radio relic in the sky: Diffuse Shock Acceleration caught in the act?

    Get PDF
    The origin of radio relics is usually explained via diffusive shock acceleration (DSA) or re-acceleration of electrons at/from merger shocks in galaxy clusters. The case of acceleration is challenged by the low predicted efficiency of low-Mach number merger shocks, unable to explain the power observed in most radio relics. In this Letter we present the discovery of a new giant radio relic around the galaxy cluster Abell 2249 (z=0.0838z=0.0838) using LOFAR. It is special since it has the lowest surface brightness of all known radio relics. We study its radio and X-ray properties combinig LOFAR data with uGMRT, JVLA and XMM. This object has a total power of L1.4GHz=4.1±0.8×1023L_{1.4\rm GHz}=4.1\pm 0.8 \times 10^{23} W Hz−1^{-1} and integrated spectral index α=1.15±0.23\alpha = 1.15\pm 0.23. We infer for this radio relic a lower bound on the magnetisation of B≥0.4 μB\geq 0.4\, \muG, a shock Mach number of M≈3.79\mathcal{M}\approx 3.79, and a low acceleration efficiency consistent with DSA. This result suggests that a missing population of relics may become visible thanks to the unprecedented sensitivity of the new generation of radio telescopes.Comment: Letter, 5 pages, 4 figures, accepted for publication on MNRAS Letter

    Spectro-polarimetric observations of the CIZA J2242.8+5301 northern radio relic: no evidence of high-frequency steepening

    Get PDF
    Observations of radio relics at very high frequency (>10 GHz) can help to understand how particles age and are (re-)accelerated in galaxy cluster outskirts and how magnetic fields are amplified in these environments. In this work, we present new single-dish 18.6 GHz Sardinia Radio Telescope and 14.25 GHz Effelsberg observations of the well known northern radio relic of CIZA J2242.8+5301. We detected the relic which shows a length of ∼\sim1.8 Mpc and a flux density equal to S14.25 GHz=(9.5±3.9) mJy\rm S_{14.25\,GHz}=(9.5\pm3.9)\,mJy and S18.6 GHz=(7.67±0.90) mJy\rm S_{18.6\,GHz}=(7.67\pm0.90)\,mJy at 14.25 GHz and 18.6 GHz respectively. The resulting best-fit model of the relic spectrum from 145 MHz to 18.6 GHz is a power-law spectrum with spectral index α=1.12±0.03\alpha=1.12\pm0.03: no evidence of steepening has been found in the new data presented in this work. For the first time, polarisation properties have been derived at 18.6 GHz, revealing an averaged polarisation fraction of ∼40%\sim40\% and a magnetic field aligned with the 'filaments' or 'sheets' of the relic.Comment: 10 pages, 8 figure

    Fast magnetic field amplification in distant galaxyclusters

    Get PDF
    In the present-day Universe, magnetic fields pervade galaxy clusters, with strengths of a few microGauss obtained from Faraday Rotation. Evidence for cluster magnetic fields is also provided by Megaparsec-scale radio emission, namely radio halos and relics. These are commonly found in merging systems and are characterized by a steep radio spectrum. It is widely believed that magneto-hydrodynamical turbulence and shock-waves (re-)accelerate cosmic rays, producing halos and relics. The origin and the amplification of magnetic fields in clusters is not well understood. It has been proposed that turbulence drives a small-scaledynamo that amplifies seed magnetic fields (primordial and/or injected by galactic outflows, as active galactic nuclei, starbursts, or winds). At high redshift, radio halos are expected to be faint, due to the Inverse Compton losses and dimming effect with distance. Moreover, Faraday Rotation measurements are difficult to obtain. If detected, distant radio halosprovide an alternative tool to investigate magnetic field amplification. Here, we report LOFAR observations which reveal diffuse radio emission in massive clusters when the Universe was only half of its present age, with a sample occurrence fraction of about 50%. The high radio luminosities indicate that these clusters have similar magnetic field strengths to those in nearby clusters, and suggest that magnetic field amplification is fast during the first phases ofcluster formation.Comment: Published in Nature Astronomy on 2 November 2020. The published version is available at this URL https://www.nature.com/articles/s41550-020-01244-5#citea

    Spectral study of the diffuse synchrotron source in the galaxy cluster Abell 523

    Get PDF
    The galaxy cluster Abell 523 (A523) hosts an extended diffuse synchrotron source historically classified as a radio halo. Its radio power at 1.4 GHz makes it one of the most significant outliers in the scaling relations between observables derived from multiwavelength observations of galaxy clusters: it has a morphology that is different and offset from the thermal gas, and it has polarized emission at 1.4 GHz typically difficult to observe for this class of sources. A magnetic field fluctuating on large spatial scales (similar to 1 Mpc) can explain these peculiarities but the formation mechanism for this source is not yet completely clear. To investigate its formation mechanism, we present new observations obtained with the LOw Frequency ARray at 120-168 MHz and the Jansky Very Large Array at 1-2 GHz, which allow us to study the spectral index distribution of this source. According to our data the source is observed to be more extended at 144 MHz than previously inferred at 1.4 GHz, with a total size of about 1.8 Mpc and a flux density S-144 MHz = (1.52 +/- 0.31) Jy. The spectral index distribution of the source is patchy with an average spectral index alpha similar to 1.2 between 144 MHz and 1.410 GHz, while an integrated spectral index alpha similar to 2.1 has been obtained between 1.410 and 1.782 GHz. A previously unseen patch of steep spectrum emission is clearly detected at 144 MHz in the south of the cluster. Overall, our findings suggest that we are observing an overlapping of different structures, powered by the turbulence associated with the primary and a possible secondary merger.Peer reviewe

    Safer topical treatment for inflammation using 5α-tetrahydrocorticosterone in mouse models

    Get PDF
    Use of topical glucocorticoid for inflammatory skin conditions is limited by systemic and local side-effects. This investigation addressed the hypothesis that topical 5α-tetrahydrocorticosterone (5αTHB, a corticosterone metabolite) inhibits dermal inflammation without affecting processes responsible for skin thinning and impaired wound healing. The topical anti-inflammatory properties of 5αTHB were compared with those of corticosterone in C57Bl/6 male mice with irritant dermatitis induced by croton oil, whereas its effects on angiogenesis, inflammation, and collagen deposition were investigated by subcutaneous sponge implantation. 5αTHB decreased dermal swelling and total cell infiltration associated with dermatitis similarly to corticosterone after 24 h, although at a five fold higher dose, but in contrast did not have any effects after 6 h. Pre-treatment with the glucocorticoid receptor antagonist RU486 attenuated the effect of corticosterone on swelling at 24 h, but not that of 5αTHB. After 24 h 5αTHB reduced myeloperoxidase activity (representative of neutrophil infiltration) to a greater extent than corticosterone. At equipotent anti-inflammatory doses 5αTHB suppressed angiogenesis to a limited extent, unlike corticosterone which substantially decreased angiogenesis compared to vehicle. Furthermore, 5αTHB reduced only endothelial cell recruitment in sponges whereas corticosterone also inhibited smooth muscle cell recruitment and decreased transcripts of angiogenic and inflammatory genes. Strikingly, corticosterone, but not 5αTHB, reduced collagen deposition. However, both 5αTHB and corticosterone attenuated macrophage infiltration into sponges. In conclusion, 5αTHB displays the profile of a safer topical anti-inflammatory compound. With limited effects on angiogenesis and extracellular matrix, it is less likely to impair wound healing or cause skin thinning

    Clonal Characterization of Rat Muscle Satellite Cells: Proliferation, Metabolism and Differentiation Define an Intrinsic Heterogeneity

    Get PDF
    Satellite cells (SCs) represent a distinct lineage of myogenic progenitors responsible for the postnatal growth, repair and maintenance of skeletal muscle. Distinguished on the basis of their unique position in mature skeletal muscle, SCs were considered unipotent stem cells with the ability of generating a unique specialized phenotype. Subsequently, it was demonstrated in mice that opposite differentiation towards osteogenic and adipogenic pathways was also possible. Even though the pool of SCs is accepted as the major, and possibly the only, source of myonuclei in postnatal muscle, it is likely that SCs are not all multipotent stem cells and evidences for diversities within the myogenic compartment have been described both in vitro and in vivo. Here, by isolating single fibers from rat flexor digitorum brevis (FDB) muscle we were able to identify and clonally characterize two main subpopulations of SCs: the low proliferative clones (LPC) present in major proportion (∼75%) and the high proliferative clones (HPC), present instead in minor amount (∼25%). LPC spontaneously generate myotubes whilst HPC differentiate into adipocytes even though they may skip the adipogenic program if co-cultured with LPC. LPC and HPC differ also for mitochondrial membrane potential (ΔΨm), ATP balance and Reactive Oxygen Species (ROS) generation underlying diversities in metabolism that precede differentiation. Notably, SCs heterogeneity is retained in vivo. SCs may therefore be comprised of two distinct, though not irreversibly committed, populations of cells distinguishable for prominent differences in basal biological features such as proliferation, metabolism and differentiation. By these means, novel insights on SCs heterogeneity are provided and evidences for biological readouts potentially relevant for diagnostic purposes described

    Adherence to the Mediterranean-Style Eating Pattern and Macular Degeneration: A Systematic Review of Observational Studies

    Get PDF
    Age-related macular degeneration (AMD) is a serious degenerative disease affecting the eyes, and is the main cause of severe vision loss among people >55 years of age in developed countries. Its onset and progression have been associated with several genetic and lifestyle factors, with diet appearing to play a pivotal role in the latter. In particular, dietary eating patterns rich in plant foods have been shown to lower the risk of developing the disease, and to decrease the odds of progressing to more advanced stages in individuals already burdened with early AMD. We systematically reviewed the literature to analyse the relationship between the adherence to a Mediterranean diet, a mainly plant-based dietary pattern, and the onset/progression of AMD. Eight human observational studies were analysed. Despite some differences, they consistently indicate that higher adherence to a Mediterranean eating pattern lowers the odds of developing AMD and decreases the risk of progression to more advanced stages of the disease, establishing the way for preventative measures emphasizing dietary patterns rich in plant-foods

    The differentiation state of the Schwann cell progenitor drives phenotypic variation between two contagious cancers

    No full text
    Contagious cancers are a rare pathogenic phenomenon in which cancer cells gain the ability to spread between genetically distinct hosts. Nine examples have been identified across marine bivalves, dogs and Tasmanian devils, but the Tasmanian devil is the only mammalian species known to have given rise to two distinct lineages of contagious cancer, termed Devil Facial Tumour 1 (DFT1) and 2 (DFT2). Remarkably, DFT1 and DFT2 arose independently from the same cell type, a Schwann cell, and while their ultra-structural features are highly similar they exhibit variation in their mutational signatures and infection dynamics. As such, DFT1 and DFT2 provide a unique framework for investigating how a common progenitor cell can give rise to distinct contagious cancers. Using a proteomics approach, we show that DFT1 and DFT2 are derived from Schwann cells in different differentiation states, with DFT2 carrying a molecular signature of a less well differentiated Schwann cell. Under inflammatory signals DFT1 and DFT2 have different gene expression profiles, most notably involving Schwann cell markers of differentiation, reflecting the influence of their distinct origins. Further, DFT2 cells express immune cell markers typically expressed during nerve repair, consistent with an ability to manipulate their extracellular environment, facilitating the cell’s ability to transmit between individuals. The emergence of two contagious cancers in the Tasmanian devil suggests that the inherent plasticity of Schwann cells confers a vulnerability to the formation of contagious cancers
    corecore