28 research outputs found
Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes
Fluorescence resonance energy transfer in complexes of semiconductor CdSe/ZnS quantum dots with molecules of heterocyclic azo dyes, 1-(2-pyridylazo)-2-naphthol and 4-(2-pyridylazo) resorcinol, formed at high quantum dot concentration in the polymer pore track membranes were studied by steady-state and transient PL spectroscopy. The effect of interaction between the complexes and free quantum dots on the efficiency of the fluorescence energy transfer and quantum dot luminescence quenching was found and discussed
Investigation of Nonlinear Optical Properties of Quantum Dots Deposited onto a Sample Glass Using Time-Resolved Inline Digital Holography
We report on the application of time-resolved inline digital holography in the study of the nonlinear optical properties of quantum dots deposited onto sample glass. The Fresnel diffraction patterns of the probe pulse due to noncollinear degenerate phase modulation induced by a femtosecond pump pulse were extracted from the set of inline digital holograms and analyzed. The absolute values of the nonlinear refractive index of both the sample glass substrate and the deposited layer of quantum dots were evaluated using the proposed technique. To characterize the inhomogeneous distribution of the samples’ nonlinear optical properties, we proposed plotting an optical nonlinearity map calculated as a local standard deviation of the diffraction pattern intensities induced by noncollinear degenerate phase modulation.publishedVersionPeer reviewe
Immunoglobulin, glucocorticoid, or combination therapy for multisystem inflammatory syndrome in children: a propensity-weighted cohort study.
BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C), a hyperinflammatory condition associated with SARS-CoV-2 infection, has emerged as a serious illness in children worldwide. Immunoglobulin or glucocorticoids, or both, are currently recommended treatments. METHODS: The Best Available Treatment Study evaluated immunomodulatory treatments for MIS-C in an international observational cohort. Analysis of the first 614 patients was previously reported. In this propensity-weighted cohort study, clinical and outcome data from children with suspected or proven MIS-C were collected onto a web-based Research Electronic Data Capture database. After excluding neonates and incomplete or duplicate records, inverse probability weighting was used to compare primary treatments with intravenous immunoglobulin, intravenous immunoglobulin plus glucocorticoids, or glucocorticoids alone, using intravenous immunoglobulin as the reference treatment. Primary outcomes were a composite of inotropic or ventilator support from the second day after treatment initiation, or death, and time to improvement on an ordinal clinical severity scale. Secondary outcomes included treatment escalation, clinical deterioration, fever, and coronary artery aneurysm occurrence and resolution. This study is registered with the ISRCTN registry, ISRCTN69546370. FINDINGS: We enrolled 2101 children (aged 0 months to 19 years) with clinically diagnosed MIS-C from 39 countries between June 14, 2020, and April 25, 2022, and, following exclusions, 2009 patients were included for analysis (median age 8·0 years [IQR 4·2-11·4], 1191 [59·3%] male and 818 [40·7%] female, and 825 [41·1%] White). 680 (33·8%) patients received primary treatment with intravenous immunoglobulin, 698 (34·7%) with intravenous immunoglobulin plus glucocorticoids, 487 (24·2%) with glucocorticoids alone; 59 (2·9%) patients received other combinations, including biologicals, and 85 (4·2%) patients received no immunomodulators. There were no significant differences between treatments for primary outcomes for the 1586 patients with complete baseline and outcome data that were considered for primary analysis. Adjusted odds ratios for ventilation, inotropic support, or death were 1·09 (95% CI 0·75-1·58; corrected p value=1·00) for intravenous immunoglobulin plus glucocorticoids and 0·93 (0·58-1·47; corrected p value=1·00) for glucocorticoids alone, versus intravenous immunoglobulin alone. Adjusted average hazard ratios for time to improvement were 1·04 (95% CI 0·91-1·20; corrected p value=1·00) for intravenous immunoglobulin plus glucocorticoids, and 0·84 (0·70-1·00; corrected p value=0·22) for glucocorticoids alone, versus intravenous immunoglobulin alone. Treatment escalation was less frequent for intravenous immunoglobulin plus glucocorticoids (OR 0·15 [95% CI 0·11-0·20]; p<0·0001) and glucocorticoids alone (0·68 [0·50-0·93]; p=0·014) versus intravenous immunoglobulin alone. Persistent fever (from day 2 onward) was less common with intravenous immunoglobulin plus glucocorticoids compared with either intravenous immunoglobulin alone (OR 0·50 [95% CI 0·38-0·67]; p<0·0001) or glucocorticoids alone (0·63 [0·45-0·88]; p=0·0058). Coronary artery aneurysm occurrence and resolution did not differ significantly between treatment groups. INTERPRETATION: Recovery rates, including occurrence and resolution of coronary artery aneurysms, were similar for primary treatment with intravenous immunoglobulin when compared to glucocorticoids or intravenous immunoglobulin plus glucocorticoids. Initial treatment with glucocorticoids appears to be a safe alternative to immunoglobulin or combined therapy, and might be advantageous in view of the cost and limited availability of intravenous immunoglobulin in many countries. FUNDING: Imperial College London, the European Union's Horizon 2020, Wellcome Trust, the Medical Research Foundation, UK National Institute for Health and Care Research, and National Institutes of Health
Energy transfer in complexes of water-soluble quantum dots and chlorin e6 molecules in different environments
The photoexcitation energy transfer is found and investigated in complexes of CdSe/ZnS cationic quantum dots and chlorin e6 molecules formed by covalent bonding and electrostatic interaction in aqueous solution and in porous track membranes. The quantum dots and chlorin e6 molecules form stable complexes that exhibit Förster resonance energy transfer (FRET) from quantum dots to chlorin e6 regardless of complex formation conditions. Competitive channels of photoexcitation energy dissipation in the complexes, which hamper the FRET process, were found and discussed
The Influence of Phthalocyanine Aggregation in Complexes with CdSe/ZnS Quantum Dots on the Photophysical Properties of the Complexes
The formation of nonluminescent aggregates of aluminium sulfonated phthalocyanine in complexes with CdSe/ZnS quantum dots causes a decrease of the intracomplex energy transfer efficiency with increasing phthalocyanine concentration. This was confirmed by steady-state absorption and photoluminescent spectroscopy. A corresponding physical model was developed that describes well the experimental data. The results can be used at designing of QD/molecule systems with the desired spatial arrangement for photodynamic therapy
Possibilities of radionuclide diagnostics of Her2-positive breast cancer using technetium-99m-labeled target molecules : the first experience of clinical use
Background. The main purpose of the Her2/neu status determination in clinical practice is to determine the indications for the appointment of targeted therapy. The main methods for detecting the Her2/neu status are the immunohistochemical method (IHC) and the fluorescence in situ hybridization (FISH); however, despite their widespread use, they have a number of significant disadvantages. Over the past few years, radionuclide diagnostics using a new class of alternative scaffold proteins that meet all the requirements for optimal delivery of radionuclides to tumor cells has become widespread. Aim. To study the possibility of clinical use of a radiopharmaceutical based on technetium-99m-labeled target molecules for the diagnosis of breast cancer with the Her2/neu overexpression in humans. Materials and methods. The study included 11 patients with breast cancer (T1–4N0–2M0) before systemic therapy: 5 with Her2/neu overexpression; expression of the marker was not detected in 6. In all cases, morphologicaland immunohistochemical studies were performed. In case of Her2/neu 2+, FISH analysis was performed. The radiopharmaceutical was prepared immediately before administration, after which it was slowly injected intravenously into the patient. Scintigraphic studies in the “WholeBody” mode and SPECT of the chest organs were performed 2, 4, 6 and 24 hours after injection. Results. Radiochemical yield, radiochemical purity and activity before administration were (80 ± 4)%, (98 ± 1)% and (434 ± 19.5) MBq, respectively. The greatest uptake by normal organs was observed at a time interval of 6 hours in the kidneys and at a moderate activity in the liver and lungs at the same time interval. The organ with the highest absorbed dose was the kidneys; significant accumulation was also detected in the adrenal glands, gallbladder, liver, pancreas and spleen. The smallest accu mulation of the studied drug was observed in the brain (0.001 ± 0.000) mGy and skin (0.001 ± 0.000) mGy. The effective dose was (0.009 ± 0.002) mGy. The difference between tumors with positive and negative Her2-neu expression was found at all time points. In this case, the best indicator was determined after 2 hours of drug injection (р < 0.05). Conclusion. Based on the results obtained, it can be indicated that the investigated radiopharmaceutical can be considered as a new additional method for the diagnosis of Her2-positive breast tumors