58 research outputs found

    Gli2, hedgehog and TCR signalling

    Get PDF
    Editoria

    Shh production and Gli signaling is activated in vivo in lung, enhancing the Th2 response during a murine model of allergic asthma

    Get PDF
    The pathophysiology of allergic asthma is driven by T-helper 2 (Th2) immune responses following aeroallergen inhalation. The mechanisms that initiate, potentiate and regulate airways allergy are incompletely characterized. We have previously shown that Hedgehog (Hh) signaling to T-cells, via downstream Gli transcription factors, enhances T-cell conversion to a Th2 phenotype. Here, we show for the first time that Gli-dependent transcription is activated in T-cells in vivo during murine allergic airways disease (AAD) a model for the immunopathology of asthma; and that genetic repression of Gli signaling in Tcells decreases the differentiation and/or recruitment of Th2 cells to the lung. We report that T-cells are not the only cells capable of expressing activated Gli during AAD. A substantial proportion of eosinophils and lung epithelial cells, both central mediators of the immunopathology of asthma, are also able to undergo Hh/Gli signaling. Finally, we show that Shh increases Il4 expression in eosinophils. We therefore propose that Hh signaling during AAD is complex, involving multiple cell types, signaling in an auto- or paracrine fashion. Improved understanding of the role of this major morphogenetic pathway in asthma may give rise to new drug targets for this chronic condition

    A novel role for Hedgehog in T-cell receptor signaling: implications for development and immunity

    Get PDF
    The Hedgehog (Hh) signaling pathway is a key regulator of both embryonic development and homeostasis of adult tissues, including thymus and blood. In the thymus, Hh signals for differentiation, survival and proliferation in the early stages of T cell development, before TCR gene rearrangement. Our recent data has shown that Hh signaling also modulates T cell receptor (TCR) signal strength in more mature T lineage cells. We showed that constitutive activation of the Hh pathway in thymocytes (by transgenic expression of the transcriptional activator form of Gli2) decreased TCR signal strength with profound consequences for the thymus--allowing self-reactive T cells to escape deletion and altering T cell CD4/CD8 lineage decisions. In contrast, in the Sonic Hh deficient thymus, TCR signaling was increased, again influencing both TCR repertoire selection and CD4/8 lineage commitment. In peripheral T cells, the transcriptional changes induced by activation of the Hh signaling pathway lead to reduced T cell activation. Hh signaling also attenuated ERK phosphorylation and proliferation in mature T cells on TCR ligation. Modulation of TCR signal strength by Hh pathway activation has importance for immunity as the presence or absence of Hh in the environment in which a T cell is activated would shape the immune response

    Hedgehog signalling promotes Th2-differentiation in naive human CD4 T-cells

    Get PDF
    Original journal article Abstract: Here we show that differentiation of human naïve CD4 T-cells to Th2 is promoted by Hedgehog signaling and attenuated by SMO-inhibition. As Hedgehog proteins are produced by epithelial tissues this finding is important to understanding atopic disease

    The Pioneer Transcription Factor Foxa2 Modulates T Helper Differentiation to Reduce Mouse Allergic Airway Disease

    Get PDF
    Foxa2, a member of the Forkhead box (Fox) family of transcription factors, plays an important role in the regulation of lung function and lung tissue homeostasis. FOXA2 expression is reduced in the lung and airways epithelium of asthmatic patients and in mice absence of Foxa2 from the lung epithelium contributes to airway inflammation and goblet cell hyperplasia. Here we demonstrate a novel role for Foxa2 in the regulation of T helper differentiation and investigate its impact on lung inflammation. Conditional deletion of Foxa2 from T-cells led to increased Th2 cytokine secretion and differentiation, but decreased Th1 differentiation and IFN-γ expression in vitro. Induction of mouse allergic airway inflammation resulted in more severe disease in the conditional Foxa2 knockout than in control mice, with increased cellular infiltration to the lung, characterized by the recruitment of eosinophils and basophils, increased mucus production and increased production of Th2 cytokines and serum IgE. Thus, these experiments suggest that Foxa2 expression in T-cells is required to protect against the Th2 inflammatory response in allergic airway inflammation and that Foxa2 is important in T-cells to maintain the balance of effector cell differentiation and function in the lung

    Repression of hedgehog signal transduction in T-lineage cells increases TCR-induced activation and proliferation

    Get PDF
    Hedgehog proteins signal for differentiation, survival and proliferation of the earliest thymocyte progenitors, but their functions at later stages of thymocyte development and in peripheral T-cell function are controversial. Here we show that repression of Hedgehog (Hh) pathway activation in T-lineage cells, by expression of a transgenic repressor form of Gli2 (Gli2DeltaC2), increased T-cell differentiation and activationin response to TCR signalling. Expression of the Gli2DeltaC2 transgene increased differentiation from CD4(+)CD8(+) to single positive thymocyte, and increased peripheral T cell populations. Gli2DeltaC2 T-cells were hyper-responsive to activation by ligation of CD3 and CD28: they expressed cell surface activation markers CD69 and CD25 more quickly, and proliferated more than wild-type T-cells. These data show that Hedgehog pathway activation in thymocytes and T-cells negatively regulates TCR-dependent differentiation and proliferation. Thus, as negative regulators of TCR-dependent events, Hh proteins provide an environmental influence on T-cell fate

    Thymus transplantation for complete DiGeorge syndrome: European experience

    Get PDF
    Background: Thymus transplantation is a promising strategy for the treatment of athymic complete DiGeorge syndrome (cDGS). Methods: Twelve patients with cDGS were transplanted with allogeneic cultured thymus. Objective: To confirm and extend the results previously obtained in a single centre. Results: Two patients died of pre-existing viral infections without developing thymopoeisis and one late death occurred from autoimmune thrombocytopaenia. One infant suffered septic shock shortly after transplant resulting in graft loss and the need for a second transplant. Evidence of thymopoeisis developed from 5-6 months after transplantation in ten patients. The median (range) of circulating naïve CD4 counts (x10663 /L) were 44(11-440) and 200(5-310) at twelve and twenty-four months post-transplant and T-cell receptor excision circles were 2238 (320-8807) and 4184 (1582 -24596) per106 65 T-cells. Counts did not usually reach normal levels for age but patients were able to clear pre-existing and later acquired infections. At a median of 49 months (22-80), eight have ceased prophylactic antimicrobials and five immunoglobulin replacement. Histological confirmation of thymopoeisis was seen in seven of eleven patients undergoing biopsy of transplanted tissue including five showing full maturation through to the terminal stage of Hassall body formation. Autoimmune regulator (AIRE) expression was also demonstrated. Autoimmune complications were seen in 7/12 patients. In two, early transient autoimmune haemolysis settled after treatment and did not recur. The other five suffered ongoing autoimmune problems including: thyroiditis (3); haemolysis (1), thrombocytopaenia (4) and neutropenia (1). Conclusions: This study confirms the previous reports that thymus transplantation can reconstitute T cells in cDGS but with frequent autoimmune complications in survivors

    IFITM proteins drive type 2 T helper cell differentiation and exacerbate allergic airway inflammation

    Get PDF
    T cells differentiated more efficiently to Th1, whereas Th2 differentiation was inhibited. Ifitm-family-deficient mice, but not Ifitm3-deficient mice, were less susceptible than WT to induction of allergic airways disease, with a weaker Th2 response and less severe disease and lower Il4 but higher Ifng expression and IL-27 secretion. Thus, the Ifitm family is important in adaptive immunity, influencing Th1/Th2 polarization, and Th2 immunopathology

    Joint resummation in electroweak boson production

    Full text link
    We present a phenomenological application of the joint resummation formalism to electroweak annihilation processes at measured boson momentum Q_T. This formalism simultaneously resums at next-to-leading logarithmic accuracy large threshold and recoil corrections to partonic scattering. We invert the impact parameter transform using a previously described analytic continuation procedure. This leads to a well-defined, resummed perturbative cross section for all nonzero Q_T, which can be compared to resummation carried out directly in Q_T space. From the structure of the resummed expressions, we also determine the form of nonperturbative corrections to the cross section and implement these into our analysis. We obtain a good description of the transverse momentum distribution of Z bosons produced at the Tevatron collider.Comment: 27 pages, LaTeX, 8 figures as eps files. Some additions to earlier version, this version as published in Phys. Rev. D66 (2002) 01401

    Direct BMP2/4 signaling through BMP receptor IA regulates fetal thymocyte progenitor homeostasis and differentiation to CD4+CD8+ double-positive cell

    Get PDF
    BMP2/4 signaling is required for embryogenesis and involved in thymus morphogenesis and T-lineage differentiation. In vitro experiments have shown that treatment of thymus explants with exogenous BMP4 negatively regulated differentiation of early thymocyte progenitors and the transition from CD4-CD8- (DN) to CD4+CD8+ (DP). Here we show that in vivo BMP2/4 signaling is required for fetal thymocyte progenitorhomeostasis and expansion, but negatively regulates differentiation from DN to DP cell. Unexpectedly, conditional deletion of BMPRIA from fetal thymocytes (using the Cre-loxP system and directing excision to hematopoietic lineage cells with the Vav promoter) demonstrated that physiological levels of BMP2/4 signaling directly to thymocytes through BMPRIA are required for normal differentiation and expansion of early fetal DN thymocytes. In contrast, the arrest in early thymocyte progenitor differentiation caused by exogenous BMP4 treatment of thymus explants is induced in part by direct signaling to thymocytes through BMPRIA, and in part by indirect signaling through non-hematopoietic cells. Analysis of the transition from fetal DN to DP cell, both by ex vivo analysis of conditional BMPRIA-deficient thymocytes and by treatment of thymus explants with the BMP4-inhibitor Noggin demonstrated that BMP2/4 signaling is a negative regulator at this stage. We showed that at this stage of fetal T-cell development BMP2/4 signals directly to thymocytes through BMPRIA
    corecore