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Abstract
The Hedgehog (Hh) signaling pathway is a key regulator of both embryonic develop‑

ment and homeostasis of adult tissues, including thymus and blood. In the thymus, Hh 
signals for differentiation, survival and proliferation in the early stages of T cell develop‑
ment, before TCR gene rearrangement. Our recent data has shown that Hh signaling also 
modulates T cell receptor (TCR) signal strength in more mature T lineage cells. We showed 
that constitutive activation of the Hh pathway in thymocytes (by transgenic expression of 
the transcriptional activator form of Gli2) decreased TCR signal strength with profound 
consequences for the thymus—allowing self‑reactive T cells to escape deletion and 
altering T cell CD4/CD8 lineage decisions. In contrast, in the Sonic Hh deficient thymus, 
TCR signaling was increased, again influencing both TCR repertoire selection and 
CD4/8 lineage commitment. In peripheral T cells, the transcriptional changes induced 
by activation of the Hh signaling pathway lead to reduced T cell activation. Hh signaling 
also attenuated ERK phosphorylation and proliferation in mature T cells on TCR ligation. 
Modulation of TCR signal strength by Hh pathway activation has importance for immunity 
as the presence or absence of Hh in the environment in which a T cell is activated would 
shape the immune response.

Introduction
The hedgehog (Hh) family of secreted intercellular signaling molecules (Sonic, Indian 

and Desert Hh) modulate target gene expression via the Gli transcription factors. Hh 
proteins are essential morphogens during embryogenesis and the homeostasis of adult 
tissues,1‑4 and can influence differentiation, cell cycle progression and survival.1,5 In a 
classical model, a morphogen specifies cell fate by establishment of a morphogen gradient, 
in which its movement from a polarised source provides positional information for 
patterning and differentiation in a solid tissue. In addition to its competence to transduce 
the signal, the response of the receiving cell depends on the concentration and duration of 
the signal received and therefore on its position in the tissue. In contrast to organogenesis 
of solid tissues, the immune system is ‘fluid’, made up of multiple cell types that move 
through the body and interact, differentiate and respond in many different environments. 
Despite this apparent difference, Hh signaling has also turned out to be an important 
regulator of the immune system.2,6‑12

The Gli transcription factors (Gli1, Gli2 and Gli3) are key to the interpretation of 
the Hh gradient by the receiving cell.1,5 They have distinct temporal and tissue‑specific 
expression patterns and functions. Gli2 is necessary to initiate the first transcriptional 
changes induced by Hh signaling.13 Gli1 is solely an activator of transcription, but Gli2 
and Gli3 can be processed to activate or repress target‑gene transcription, according to 
the presence or absence of Hh respectively.13‑16 Gli functions are affected by their cellular 
context, and are dependent both on cell type and the Hh environment of that cell.17,18 
The interpretation of the Hh signal in a given cell relies on the balance of activator and 
repressor forms of Gli proteins produced.

HH Signaling in the Thymus
The specialised environment of the thymus supports the maturation of haematopoietic	

progenitors into functional T lymphocytes and this involves bi‑directional signaling 
between the thymic epithelium and developing thymocytes. During T cell development, 
thymocytes pass through stages that can be defined by the expression of cell surface 
markers: CD4‑CD8‑ double negative (DN) cells differentiate into CD4+CD8+ double 
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positive (DP) thymocytes, which mature to become CD4 single	
positive (SP) and CD8 SP thymocytes. Signaling by a functional 
pre-T cell receptor (pre-TCR) is necessary for differentiation from 
DN to DP cell.19 Maturation from DP to SP cell requires the expres-
sion of a functional, MHC‑restricted abTCR and involves TCR 
repertoire selection.20,21 Positive selection of thymocytes that express 
TCR with appropriate affinity for self‑MHC molecules ensures 
functional self‑restriction, while negative selection of thymocytes that 
express TCR with high affinity for self removes overtly self‑reactive 
T cell clones; therefore cell fate is at least in part determined by the 
strength of the signal transduced by the TCR.21 Mature T cells then 
exit the thymus to populate peripheral lymphoid organs where they 
can be activated on TCR binding to peptide antigen presented by 
major histocompatibility complex (MHC) molecules. CD4 T cells 
recognise antigen as peptide in the context of self MHC Class II 
molecules, whereas CD8 T cells recognise antigen as peptide in the 
context of self MHC Class I molecules.

Hh signaling is important in T cell development, in both humans 
and mice.2,6,7,9‑12 Shh is expressed by thymic epithelial cells and 
components of the Hh signaling pathway are expressed in the 
lymphoid and stromal compartments of the thymus.2,6,9,11,12 Hh 
signaling is involved in the homeostasis of DN cells, differentiation 
from DN1 to DN26,7,10,11 and the DN to DP transition.2,7,10,11

We have recently investigated the function of Hh signaling at 
later stages of murine thymocyte development. We have shown that 
Hh signaling is involved in the maturation of immature DP cells to 
mature SP thymocytes and that it can affect TCR repertoire selection 
and CD4/8 lineage choice.12

Hh Signaling Alters TCR Repertoire Selection 
and Cd4:Cd8 Ratio in Developing Thymocytes

We produced transgenic mice with a transcriptional activator 
form of the Gli2 protein (Gli2DN2)14 under the control of the 
T‑lineage‑restricted Lck promoter.22,23 This Lck‑Gli2DN2 transgene 
induces the transcriptional events normally caused by active Hh sign-
aling, allowing us to assess the effect of constitutive activation of the 
Hh signaling pathway specifically in T cells.

Expression of the Lck‑Gli2DN2 transgene decreased the produc-
tion of CD4 SP cells in the thymus, and reduced the CD4:CD8 
ratio. Treatment of wild type (WT) thymus explants with recom-
binant Shh protein (r‑Shh) also decreased the CD4:CD8 ratio, 
confirming that Hh can influence the CD4/8 lineage decision. 
Conversely, analysis of Shh‑/‑ thymi showed increased production 
of CD4 SP cells and the CD4:CD8 ratio, confirming that Hh sign-
aling, and Shh in particular, does affect CD4/8 lineage commitment 
under physiological conditions (Fig. 1A). Commitment of the DP 
population to the CD4 or CD8 lineage is complicated by the fact 
that the mature CD4 and CD8 cells must express TCR restricted by 
the appropriate MHC molecule (by Class I in the case of CD8 SP 
cells, and by Class II in the case of CD4 SP cells). Numerous models 
have been proposed to explain how the DP population commit to 
the CD4 or CD8 lineage,24 and TCR signal strength during reper-
toire selection has been shown to influence SP lineage commitment, 
with a stronger signal favouring differentiation to CD4 SP.25‑27 
The fact that manipulation of the Hh signal received by developing 
thymocytes influenced the CD4/8 lineage decision therefore raised 
the possibility that Hh was modulating TCR signal strength, and in 
this way affecting the lineage decision. Interestingly, we found that 
cell surface expression of CD5, which correlates with TCR signal 

strength,28 was decreased in the Lck‑Gli2DN2 transgenic thymocytes, 
and after treatment of WT thymi with r‑Shh. This reduction in cell 
surface CD5 expression therefore supported the idea that the reduced 
proportion of CD4 SP cells found in the Lck‑Gli2DN2 transgenic, 
and after treatment of WT thymi with r‑Shh, is a result of Hh	
signaling acting to reduce TCR signal strength.

Figure 1. Summary of Hedgehog pathway activity in CD4/8 lineage 
commitment, TCR repertoire selection and peripheral T cell activation. 
(A) Reduced Hh signaling (i.e., in Shh‑/‑ thymus) promotes CD4 lineage 
commitment resulting in increased CD4:CD8 ratio (left). In contrast increased 
Hh signaling (i.e., in transgenic Lck‑Gli2DN2 thymocytes with constitutively 
active Hh signaling, or in thymus explants treated in vitro with r‑Shh) results 
in reduced CD4:CD8 ratio (right). (B) Hh signaling negatively influences both 
positive and negative selection. Deletion of CD8 thymocytes expressing the 
transgenic TCR recognizing the male antigen HY (in the context of MHC class I) 
is impaired in Lck‑Gli2DN2 male thymus but enhanced in Shh‑/‑ male thymus 
(left). Positive selection of Lck‑Gli2DN2 CD8 cells expressing the HY‑TCR 
is also negatively affected in the female thymus whereas positive selec‑
tion of HY‑TCR transgenic thymocytes is promoted in Shh‑/‑ female thymus. 
(C) Hedgehog signaling antagonizes in vitro T cell activation. Proliferation 
and activation of peripheral Lck‑Gli2DN2 T cells was inhibited. (D) Proposed 
model for possible role of Hh signaling and T cell activation during tissue 
repair or tumor development. Damaged tissues or tumors might produce and 
secrete Hh proteins that can signal to lymphoid cells present. We predict that 
Hh pathway signaling would limit T cell activation in response to Hh secretion 
by damaged tissues and tumors. 

Hedgehog in TCR-Signaling
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To test this hypothesis, we used the HY‑TCR transgenic model 
that allowed the study of positive and negative selection of CD8 SP 
cells.29 HY‑TCR transgenic T cells express a TCR that recognises 
a male antigen, restricted by a Class I MHC molecule. In male 
HY mice, negative selection is highly efficient with deletion of 
the male‑reactive CD8 and DP population.29 When we added the 
Lck‑Gli2DN2 transgene to male mice positive for the HY‑TCR we 
found a small population of HY‑TCR positive (auto‑reactive) CD8 
SP cells that had escaped deletion.12 The HY‑TCR model can also be 
used to assess positive selection to the CD8 lineage in female mice.29 
In HY‑TCR females with the Lck‑Gli2DN2 transgene, we observed 
reduced positive selection of thymocytes expressing the transgenic 
TCR to the CD8 SP lineage (Fig. 1B).

To confirm the physiological significance of this observation 
we analysed Shh deficient HY‑TCR mice. Again, analysis of Shh	
deficiency showed the opposite effect to the Lck‑Gli2DN2 transgenic, 
with more efficient deletion in males and increased positive selection	
in females.12 The altered selection observed using the HY‑TCR 
model thus showed that Shh signaling does act to reduce TCR signal 
strength in developing thymocytes during TCR repertoire selection 
(Fig. 1B).

Shh is secreted by thymus epithelial cells scattered in the medulla 
and at the corticomedullary junction,2,6,9 where TCR repertoire 
selection takes place.30 Proximity to the Shh source would dictate 
the strength of TCR signal received by a given cell, allowing the 
architecture of the thymus to influence the T cell repertoire by setting 
up a Hh gradient. As developing thymocytes move through the 
thymus they will encounter different strengths of Shh and therefore 
the outcome of TCR‑ligation for positive and negative selection and 
CD4/CD8 lineage decisions will be dependent on their position in 
the thymus relative to the Shh signal. Not all medullary epithelial 
cells express Shh,2,6,9 so it is likely that Shh‑secreting‑epithelial cells 
are specialised for particular functions, setting up ‘niches’ to promote 
positive selection and commitment to the CD8 lineage.

The way in which the transcriptional changes induced by Hh 
pathway activation modulate the TCR signal during repertoire selec-
tion are unknown, and further investigation is required.

Hh Signaling Attenuates Peripheral T‑Cell Activation 
and Proliferation

On antigen recognition in the periphery, naïve T cells are stimu-
lated to clonally expand and differentiate into effector cells. This 
requires costimulation from antigen presenting cells (APC) and 
outcome is influenced by cytokines, the microenvironment and the 
strength of the TCR signal received.31

Peripheral T cell activation and proliferation require two distinct 
signaling events. The TCR‑CD3 complex recognises antigen 
presented as peptide bound to MHC molecules on the surface of 
APC, and signals for T cell activation. In addition, for full T cell 
activation a costimulatory signal is required, transduced by binding 
of CD28 on the T cell to CD80/CD86 on the APC. These events 
at the cell surface trigger intracellular signaling: Immunoreceptor 
tyrosine‑based activation motifs (ITAMs) on CD3 polypeptides are 
phosphorylated by Lck causing recruitment and activation of ZAP‑70. 
This results in the activation of multiple signaling cascades including 
the MAPKinase, PKC, DAG Kinase, PI3Kinase and Calcineurin 
pathways, leading to the activation of transcription factors such 
as NFkB, NFAT and AP‑1. These transcription factors bind to 
and activate transcription of genes necessary for T cell activation,	

including IL‑2.32‑34 Secretion of IL‑2, a potent T cell growth factor, 
and upregulation of IL‑2 Receptor expression by the T cell, allow 
autocrine control of T cell proliferation.

The strength of signal transduced by the naïve T cell on TCR 
binding, as determined by antigen concentration and affinity and 
duration of the interaction, influences further T cell maturation to 
specialised effector populations.35 The interaction between the T cell 
and the APC is enhanced by adhesion molecules and integrins. These 
are differentially expressed depending on the activation and differ-
entiation status of the cell, and this is itself regulated by cytokines and 
signals from the environment.36 The final outcome of the activating 
signals is therefore additionally dependent on the microenvironment 
of both the T cell and the APC. One possible influence on T cell	
activation could be Hh secretion at the site of activation. The role 
of Shh in peripheral T cell activation and function, however, is 
controversial.6,37‑39 We therefore used the Lck‑Gli2DN2 transgenic 
model to investigate the effect of Hh pathway activation on T cell 
activation.

In these experiments, in vitro activation of Lck‑Gli2DN2 trans-
genic T cells by ligation of TCR and CD28, attenuated T cell 
activation, indicating that the Hh signaling pathway negatively affects 
TCR‑induced T cell activation.12 The presence of the Lck‑Gli2DN2 
transgene also seriously affected the ability of T cells to proliferate in 
response to TCR and CD28 ligation12 (Fig. 1C).

Hh signaling has long been linked to proliferation, with an 
increase in Hh signaling generally found to enhance proliferation 
(for example in the development of limb, taste buds, neural crest and 
thymus).4,6,10,40‑44 Consistent with Hh promoting cell expansion, 
the first Gli protein to be discovered, Gli1, was initially identified 
as an amplified gene and potential oncogene in a human glioma 
line,45,46 and a�������������������������������������������������       berrant �����������������������������������������       Hh signaling has been implicated in many 
common malignant tumors such as small cell lung carcinoma, 
pancreatic, stomach and prostate cancer.47‑50

By analysis of loss‑of‑function mutants, T lineage studies have 
shown that Hh signaling promotes proliferation of early DN 
thymocytes.6,10 In contrast, we have recently found that constitutive 
activation of the Hh pathway inhibits the proliferation of mature T 
cells.12 The effect of Hh signaling on proliferation has also appeared 
ambiguous in other systems, in particular in the retina.51 In chick 
and mouse retina Shh activation resulted in increased BrdU incor-
poration suggesting that Hh signaling promotes proliferation.52‑54 
However, Hh mutant Zebrafish exhibited prolonged retinal prolif-
eration due to the inability of precursor cells to exit the cell cycle.55 
Recent work has suggested that Hh signaling may effect stem, 
progenitor and mature cells differently, with Hh signaling either 
promoting proliferation or pushing cells out of the cell cycle resulting 
in reduced proliferative ability depending on the state of differentia-
tion of the cell.56 The T cell lineage seems to provide another example 
of Hh activation promoting proliferation of the progenitor cell, but 
limiting the proliferation of the more differentiated mature cell. This 
difference in outcome could reflect differences in the intracellular 
context in which the Hh signal is transduced, leading to the tran-
scriptional regulation of distinct sets of target genes. Alternatively, 
the inhibition of TCR‑induced mature T cell proliferation could be 
the result of reduction in TCR signal strength by the pathway, rather 
than a direct effect on cell cycle regulator target genes. While early 
thymocyte progenitors must expand rapidly to fill the DP pool, and 
do not yet express a TCR, in differentiated T cells proliferation must 
only occur as a consequence of appropriate activation in response to 
antigen, after stimulation through their TCR. Thus, quite different 
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processes initiate proliferation, consistent with the opposing effects of 
Hh signaling in the T lineage, in accordance with maturity.

ERK Phosphorylation and Hh Signaling
To dissect further the effect of Hh signaling on TCR signal 

strength, peripheral T cell activation and proliferation, we followed 
the kinetics of MAPkinase pathway activation by measuring ERK 
phosphorylation after TCR‑induced activation by Western blot.57 
Presence of the Lck‑Gli2DN2 transgene led to much delayed and 
reduced levels of ERK phosphorylation, which was further confirmed 
to be T‑cell specific using a FACS‑based assay.12

This reduced ERK phosphorylation observed in our transgenic 
T cells is of particular interest, as previous accounts of Hh pathway 
involvement in other tissues are often linked to improved ERK 
phosphorylation.58‑61 For example, addition of Shh during retinal 
regeneration, led to an increase in ERK phosphorylation indirectly 
via the FGF/FGFR pathway.59 The mechanism by which the	
transcriptional events induced by Hh signaling reduced TCR‑induced 
ERK phosphorylation is unknown, however it must be proximal to 
TCR ligation, as ERK phosphorylation is an immediate consequence 
of TCR ligation.62

The MAPKinase pathway is a key regulator of cell proliferation.57 
ERK activity must be sustained late into G1 to enable successful 
S‑phase entry63 and inhibitors of ERK phosphorylation have been 
shown to inhibit the proliferation of many cell types including T 
cells.57 A reduction in ERK phosphorylation leads to a decrease 
in the transcription of ubiquitous mediators of cell cycle progres-
sion and in the case of activating T cells, also of IL‑2 

34,57,64 any of 
which could lead to the observed attenuation of proliferation in the 
Lck‑Gli2DN2 cells. In our experiments, addition of IL‑2 to activated 
cultures restored proliferation of Lck‑Gli2DN2 T cells to WT levels, 
suggesting that a reduction in IL‑2 gene transcription (caused by 
attenuated MAPkinase activity64) is responsible for the proliferative 
defect. The fact the Lck‑Gli2DN2 T cells can proliferate in response 
to IL‑2 demonstrated that the transcriptional changes induced by 
active Hh signaling did not inherently inhibit T cell division.

Thus, we favour a model in which the decreased proliferation and 
ERK activation of mature T cells on TCR ligation, caused by consti-
tutive Hh signaling, is a consequence of reduced TCR signal strength 
mediated by Hh‑dependent transcription, rather than a direct effect 
of Hh on the cells’ proliferation per se.

Implications for Immunity and Disease
Modulation of TCR signal strength by Hh has profound impli-

cations for immunity. Presence of Hh would alter the threshold 
required for T cell activation, and therefore determine the outcome 
of the naïve T cell’s interaction with antigen, with consequences for 
anergy, regulation, tolerance and inflammation. This has significance 
for immune responses, as localised sources of Hh in the T cell micro-
environment could influence the outcome of TCR signaling. In the 
future, it will be important to test this hypothesis in mouse models 
and in human disease.

Hh ���������������������������������������������       proteins are expressed in skin, gut and lung.1 These tissues 
are subject to recurrent immune challenge, as they are the sites of 
entry of external pathogens from the environment, from food and 
air. They are also subject to inflammatory and autoimmune diseases. 
Hh expression in these tissues during renewal or remodelling after	
infection or tissue‑damage could function to dampen down the 
immune response, protecting against the induction of inflammatory 

or autoimmune diseases (Fig. 1D). By reducing lymphocyte responses 
to antigen, �������������������������������������������������������         Hh signaling may also be involved in immune evasion by 
tumours. Aberrant Hh signaling is common in many cancers5,17 and 
secretion of Hh by a tumour could potentially diminish the immune 
response to that tumour, allowing escape from immune surveillance.

Changes in Hh signaling could be involved in the aetiology of 
autoimmune disease and mutations in components of the pathway 
could increase disease susceptibility, either by allowing self‑reactive T 
cells to escape negative selection in the thymus, or by reducing the 
TCR signal threshold for mature T cell activation. In the thymus, 
mutations increasing either Shh secretion by epithelial cells, or 
signal interpretation by thymocytes, would allow those self‑reactive 
clones that would normally be deleted, to mature and escape into 
the peripheral lymphoid organs, potentially leading to autoimmune 
disease. In contrast, mutations leading to decreased Hh signal in 
peripheral T cells (via decreased secretion in the environment or 
signal interpretation by the T cell) would increase the TCR signal, 
potentially leading to inappropriate T cell activation.

The role of Hh signaling in T cells (and immunity) is a new field, 
so there is still much work to be done to dissect its functions and 
gain insight into the molecular mechanisms. It will be important to 
understand how Hh modulates the TCR signal, and to investigate 
the effect of Hh gradient on the signal. It will also be interesting 
to test if Hh signaling regulates other components of the immune 
system.
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