37 research outputs found

    The ARGO Project: assessing NA-TECH risks on offshore oil platforms

    Get PDF
    Abstract Analysis of natural and anthRopoGenic risks on Offshore platforms (ARGO) is a 3-years project, funded by the Italian Ministry of Economic Development. The project, coordinated by AMRA, a permanent Research Centre for the development of innovative technologies applied to environmental problems, aims at providing technical-support for the analysis of natural and anthropogenic risks on offshore oil-platforms. ARGO has developed methodologies for the probabilistic analysis of industrial accidents triggered by natural events (NA-TECH) on offshore platforms. The final analysis of the ARGO Project suggest a constant monitoring of exploitation activity, fluids re-injection and storage using high technology networks

    GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of mouse and human pancreatic islet glucagon secretion

    Get PDF
    Diabetes mellitus is associated with impaired insulin secretion, often aggravated by oversecretion of glucagon. Therapeutic interventions should ideally correct both defects. Glucagon-like peptide 1 (GLP-1) has this capability but exactly how it exerts its glucagonostatic effect remains obscure. Following its release GLP-1 is rapidly degraded from GLP-1(7-36) to GLP-1(9-36). We hypothesised that the metabolite GLP-1(9-36) (previously believed to be biologically inactive) exerts a direct inhibitory effect on glucagon secretion and that this mechanism becomes impaired in diabetes. We used a combination of glucagon secretion measurements in mouse and human islets (including islets from donors with type 2 diabetes), total internal reflection fluorescence microscopy imaging of secretory granule dynamics, recordings of cytoplasmic Ca and measurements of protein kinase A activity, immunocytochemistry, in vivo physiology and GTP-binding protein dissociation studies to explore how GLP-1 exerts its inhibitory effect on glucagon secretion and the role of the metabolite GLP-1(9-36). GLP-1(7-36) inhibited glucagon secretion in isolated islets with an IC of 2.5 pmol/l. The effect was particularly strong at low glucose concentrations. The degradation product GLP-1(9-36) shared this capacity. GLP-1(9-36) retained its glucagonostatic effects after genetic/pharmacological inactivation of the GLP-1 receptor. GLP-1(9-36) also potently inhibited glucagon secretion evoked by β-adrenergic stimulation, amino acids and membrane depolarisation. In islet alpha cells, GLP-1(9-36) led to inhibition of Ca entry via voltage-gated Ca channels sensitive to ω-agatoxin, with consequential pertussis-toxin-sensitive depletion of the docked pool of secretory granules, effects that were prevented by the glucagon receptor antagonists REMD2.59 and L-168049. The capacity of GLP-1(9-36) to inhibit glucagon secretion and reduce the number of docked granules was lost in alpha cells from human donors with type 2 diabetes. In vivo, high exogenous concentrations of GLP-1(9-36) (>100 pmol/l) resulted in a small (30%) lowering of circulating glucagon during insulin-induced hypoglycaemia. This effect was abolished by REMD2.59, which promptly increased circulating glucagon by >225% (adjusted for the change in plasma glucose) without affecting pancreatic glucagon content. We conclude that the GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of glucagon secretion. We propose that the increase in circulating glucagon observed following genetic/pharmacological inactivation of glucagon signalling in mice and in people with type 2 diabetes reflects the removal of GLP-1(9-36)'s glucagonostatic action. [Abstract copyright: © 2023. The Author(s).

    Medicines informal market in Congo, Burundi and Angola: counterfeit and sub-standard antimalarials

    Get PDF
    BACKGROUND: The presence of counterfeits and sub-standards in African medicines market is a dramatic problem that causes many deaths each year. The increase of the phenomenon of pharmaceutical counterfeiting is due to the rise of the illegal market and to the impossibility to purchase branded high cost medicines. METHODS: In this paper the results of a quality control on antimalarial tablet samples purchased in the informal market in Congo, Burundi and Angola are reported. The quality control consisted in the assay of active substance by means of validated liquid chromatographic methods, uniformity of mass determination, disintegration and dissolution tests. Moreover, a general evaluation on label and packaging characteristics was performed. RESULTS: The results obtained on thirty antimalarial tablet samples containing chloroquine, quinine, mefloquine, sulphadoxine and pyrimethamine showed the presence of different kinds of problems: a general problem concerning the packaging (loose tablets, packaging without Producer name, Producer Country and sometimes without expiry date); low content of active substance (in one sample); different, non-declared, active substance (in one sample); sub-standard technological properties and very low dissolution profiles (in about 50% of samples). This last property could affect the bioavailability and bioequivalence in comparison with branded products and could be related to the use of different excipients in formulation or bad storage conditions. CONCLUSION: This paper evidences that the most common quality problem in the analysed samples appears to be the low dissolution profile. Here it is remarked that the presence of the right active substance in the right quantity is not a sufficient condition for a good quality drug. Dissolution test is not less important in a quality control and often evidences in vitro possible differences in therapeutic efficacy among drugs with the same active content. Dissolution profile can be dramatically affected by the choice of excipients in the oral solid formulation and, in many cases, is out of specifications due to the absence of formulation studies by producers of developing countries

    Polymorphisms in Anopheles gambiae Immune Genes Associated with Natural Resistance to Plasmodium falciparum

    Get PDF
    Many genes involved in the immune response of Anopheles gambiae, the main malaria vector in Africa, have been identified, but whether naturally occurring polymorphisms in these genes underlie variation in resistance to the human malaria parasite, Plasmodium falciparum, is currently unknown. Here we carried out a candidate gene association study to identify single nucleotide polymorphisms (SNPs) associated with natural resistance to P. falciparum. A. gambiae M form mosquitoes from Cameroon were experimentally challenged with three local wild P. falciparum isolates. Statistical associations were assessed between 157 SNPs selected from a set of 67 A. gambiae immune-related genes and the level of infection. Isolate-specific associations were accounted for by including the effect of the isolate in the analysis. Five SNPs were significantly associated to the infection phenotype, located within or upstream of AgMDL1, CEC1, Sp PPO activate, Sp SNAKElike, and TOLL6. Low overall and local linkage disequilibrium indicated high specificity in the loci found. Association between infection phenotype and two SNPs was isolate-specific, providing the first evidence of vector genotype by parasite isolate interactions at the molecular level. Four SNPs were associated to either oocyst presence or load, indicating that the genetic basis of infection prevalence and intensity may differ. The validity of the approach was verified by confirming the functional role of Sp SNAKElike in gene silencing assays. These results strongly support the role of genetic variation within or near these five A. gambiae immune genes, in concert with other genes, in natural resistance to P. falciparum. They emphasize the need to distinguish between infection prevalence and intensity and to account for the genetic specificity of vector-parasite interactions in dissecting the genetic basis of Anopheles resistance to human malaria

    Combustion induced rapid phase transition of CO/H2/O2/N2/CO2 mixtures

    Get PDF
    The oxy-combustion of hydrogen and carbon monoxide mixtures at initial atmospheric condition of temperature and pressure has shown the presence of intense peak overpressures, higher than the adiabatic value and oscillating pressure signal. In this thesis the observed explosion mode have been addressed to the rapid phase transition of super-heated liquid water produced by the combustion reaction and condensed on the vessel walls. Such complex phenomenon has to be included in the general explosion classification and it is due to the synergic coupling between a physical explosion (Rapid Phase Transition) and a chemical explosion (Deflagration). This mode has been named combustion-induced Rapid Phase Transition (c-RPT). c-RPT does not occur for CO/O2/N2 mixture because of the absence of hydrogen (no H2O in the products). The limiting value of H2 in CO/O2/N2 mixtures, for the c-RPT occurrence, has been identified as 1% in the fuel (H2+CO) . A general criterion for c-RPT peaks based on characteristic times of evaporation and combustion has been developed. When applying the criterion of c-RPT phenomenon to literature data, it turns out that they are often the result of c-RPT rather to Deflagration to Detonation Transition or Heat Explosio

    The vulnerability of industrial equipment to tsunami

    No full text
    The evaluation of vulnerability of process equipment to natural events is a central issue in the analysis of NaTech risks (Natural events triggering Technological accidents). Among others, the recent event in Japan has alerted the public opinion regarding the occurrence of tsunamis, which may result in dramatic consequences, either related to economic losses due to service interruption and repair costs, or for escalation of the tsunami towards severe catastrophic scenarios related to the loss of containment for the damaged equipment. Hence, environmental pollution, toxic dispersions, fires or explosions, depending on the stored, processed or transported fluid, on the structural design, and on the type of process operations. In this work, the hazard related to tsunami impact on industrial equipment has been analyzed, either for the natural event characterization (intensity measure, hazard), or for the particular critical infrastructure. Vulnerability (or Fragility) functions have been specifically defined with respect to tsunami wave and debris
    corecore