40 research outputs found

    Evidence for Infanticide in Bottlenose Dolphins of the Western North Atlantic

    Get PDF
    Nine bottlenose dolphin (Tursiops truncatus) calves that stranded in Virginia in 1996 and 1997 died of severe blunt-force trauma. Injuries were concentrated on the head and chest and multiple rib fractures, lung lacerations, and soft tissue contusions were prominent. Skeletal and/or soft tissue trauma occurred bilaterally in all of the calves. One had a bite wound across the left mandible that exhibited deep punctures consistent with the tooth placement in an adult bottlenose dolphin. The lesions were not compatible with predation, boat strike, fisheries interactions, rough-surf injury, or blast injury. However, they were similar to traumatic injuries described in stranded bottlenose dolphin calves and harbor porpoises (Phocoena phocoena) in Great Britain attributed to violent dolphin interactions. The evidence suggests that violent dolphin behavior was the cause of the trauma in the nine calves reported here and that infanticide occurs in bottlenose dolphins of the western North Atlantic

    Anatomy and Three-Dimensional Reconstructions of the Brain of a Bottlenose Dolphin (Tursiops truncatus) From Magnetic Resonance Images

    Get PDF
    Cetacean (dolphin, whale, and porpoise) brains are among the least studied mammalian brains because of the formidability of collecting and histologically preparing such relatively rare and large specimens. Magnetic resonance imaging offers a means of observing the internal structure of the brain when traditional histological procedures are not practical. Furthermore, internal structures can be analyzed in their precise anatomic positions, which is difficult to accomplish after the spatial distortions often accompanying histological processing. In this study, images of the brain of an adult bottlenose dolphin, Tursiops truncatus, were scanned in the coronal plane at 148 antero-posterior levels. From these scans a computer-generated three-dimensional model was constructed using the programs Voxel-View and VoxelMath (Vital Images, Inc.). This model, wherein details of internal and external morphology are represented in three-dimensional space, was then resectioned in orthogonal planes to produce corresponding series of virtual sections in the horizontal and sagittal planes. Sections in all three planes display the sizes and positions of major neuroanatomical features such as the arrangement of cortical lobes and subcortical structures such as the inferior and superior colliculi, and demonstrate the utility of MRI for neuroanatomical investigations of dolphin brains

    Myoglobin concentration and oxygen stores in different functional muscle groups from three small cetacean species

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Arregui, M., Singleton, E. M., Saavedra, P., Pabst, D. A., Moore, M. J., Sierra, E., Rivero, M. A., Câmara, N., Niemeyer, M., Fahlman, A., McLellan, W. A., & Bernaldo de Quirós, Y. Myoglobin concentration and oxygen stores in different functional muscle groups from three small cetacean species. Animals, 11(2), (2021): 451, https://doi.org/10.3390/ani11020451.Compared with terrestrial mammals, marine mammals possess increased muscle myoglobin concentrations (Mb concentration, g Mb · 100g−1 muscle), enhancing their onboard oxygen (O2) stores and their aerobic dive limit. Although myoglobin is not homogeneously distributed, cetacean muscle O2 stores have been often determined by measuring Mb concentration from a single muscle sample (longissimus dorsi) and multiplying that value by the animal’s locomotor muscle or total muscle mass. This study serves to determine the accuracy of previous cetacean muscle O2 stores calculations. For that, body muscles from three delphinid species: Delphinus delphis, Stenella coeruleoalba, and Stenella frontalis, were dissected and weighed. Mb concentration was calculated from six muscles/muscle groups (epaxial, hypaxial and rectus abdominis; mastohumeralis; sternohyoideus; and dorsal scalenus), each representative of different functional groups (locomotion powering swimming, pectoral fin movement, feeding and respiration, respectively). Results demonstrated that the Mb concentration was heterogeneously distributed, being significantly higher in locomotor muscles. Locomotor muscles were the major contributors to total muscle O2 stores (mean 92.8%) due to their high Mb concentration and large muscle masses. Compared to this method, previous studies assuming homogenous Mb concentration distribution likely underestimated total muscle O2 stores by 10% when only considering locomotor muscles and overestimated them by 13% when total muscle mass was considered.This research was funded by the US Office of Naval Research N00014-13-1-0773, the Subprograma de Biodiversidad del Ministerio de Economía y Competitividad del Gobierno de España (MINECO CGL 2012-39681 and CGL2015-71498-P) and the Canary Islands Government, which has funded and provided support to the stranding network. M.A. is funded by the University Professor Formation fellowship from the Spanish Ministry of Education, and Y.B.d.Q. is funded by a postdoctoral fellowship from the University of Las Palmas de Gran Canaria

    Lobomycosis in Offshore Bottlenose Dolphins (Tursiops truncatus), North Carolina

    Get PDF
    Lacazia loboi, a cutaneous fungus, is found in humans and dolphins from transitional tropical (Florida) and tropical (South America) regions. We report 2 cases of lobomycosis in stranded bottlenose dolphins (Tursiops truncatus) and 1 case of lobomycosis-like disease in 1 free-swimming, pelagic, offshore bottlenose dolphin from North Carolina, where no cases have previously been observed

    Bartonella species detection in captive, stranded and free-ranging cetaceans

    Get PDF
    We present prevalence of Bartonella spp. for multiple cohorts of wild and captive cetaceans. One hundred and six cetaceans including 86 bottlenose dolphins (71 free-ranging, 14 captive in a facility with a dolphin experiencing debility of unknown origin, 1 stranded), 11 striped dolphins, 4 harbor porpoises, 3 Risso's dolphins, 1 dwarf sperm whale and 1 pygmy sperm whale (all stranded) were sampled. Whole blood (n = 95 live animals) and tissues (n = 15 freshly dead animals) were screened by PCR (n = 106 animals), PCR of enrichment cultures (n = 50 animals), and subcultures (n = 50 animals). Bartonella spp. were detected from 17 cetaceans, including 12 by direct extraction PCR of blood or tissues, 6 by PCR of enrichment cultures, and 4 by subculture isolation. Bartonella spp. were more commonly detected from the captive (6/14, 43%) than from free-ranging (2/71, 2.8%) bottlenose dolphins, and were commonly detected from the stranded animals (9/21, 43%; 3/11 striped dolphins, 3/4 harbor porpoises, 2/3 Risso's dolphins, 1/1 pygmy sperm whale, 0/1 dwarf sperm whale, 0/1 bottlenose dolphin). Sequencing identified a Bartonella spp. most similar to B. henselae San Antonio 2 in eight cases (4 bottlenose dolphins, 2 striped dolphins, 2 harbor porpoises), B. henselae Houston 1 in three cases (2 Risso's dolphins, 1 harbor porpoise), and untyped in six cases (4 bottlenose dolphins, 1 striped dolphin, 1 pygmy sperm whale). Although disease causation has not been established, Bartonella species were detected more commonly from cetaceans that were overtly debilitated or were cohabiting in captivity with a debilitated animal than from free-ranging animals. The detection of Bartonella spp. from cetaceans may be of pathophysiological concern

    In Vivo Deficiency of Both C/EBPβ and C/EBPε Results in Highly Defective Myeloid Differentiation and Lack of Cytokine Response

    Get PDF
    The CCAAT/enhancer binding proteins (C/EBPs) are transcription factors involved in hematopoietic cell development and induction of several inflammatory mediators. Here, we generated C/EBPβ and C/EBPε double-knockout (bbee) mice and compared their phenotypes to those of single deficient (bbEE and BBee) and wild-type (BBEE) mice. The bbee mice were highly susceptible to fatal infections and died within 2–3 months. Morphologically, their neutrophils were blocked at the myelocytes/metamyelocytes stage, and clonogenic assays of bone marrow cells indicated a significant decrease in the number of myeloid colonies of the bbee mice. In addition, the proportion of hematopoietic progenitor cells [Lin(−)Sca1(+)c-Kit(+)] in the bone marrow of the bbee mice was significantly increased, reflecting the defective differentiation of the myeloid compartment. Furthermore, microarray expression analysis of LPS- and IFNγ-activated bone marrow-derived macrophages from bbee compared to single knockout mice revealed decreased expression of essential immune response-related genes and networks, including some direct C/EBP-targets such as Marco and Clec4e. Overall, the phenotype of the bbee mice is distinct from either the bbEE or BBee mice, demonstrating that both transcription factors are crucial for the maturation of neutrophils and macrophages, as well as the innate immune system, and can at least in part compensate for each other in the single knockout mice

    Sensitivity to Experiencing Alcohol Hangovers: Reconsideration of the 0.11% Blood Alcohol Concentration (BAC) Threshold for Having a Hangover

    Get PDF
    The 2010 Alcohol Hangover Research Group consensus paper defined a cutoff blood alcohol concentration (BAC) of 0.11% as a toxicological threshold indicating that sufficient alcohol had been consumed to develop a hangover. The cutoff was based on previous research and applied mostly in studies comprising student samples. Previously, we showed that sensitivity to hangovers depends on (estimated) BAC during acute intoxication, with a greater percentage of drinkers reporting hangovers at higher BAC levels. However, a substantial number of participants also reported hangovers at comparatively lower BAC levels. This calls the suitability of the 0.11% threshold into question. Recent research has shown that subjective intoxication, i.e., the level of severity of reported drunkenness, and not BAC, is the most important determinant of hangover severity. Non-student samples often have a much lower alcohol intake compared to student samples, and overall BACs often remain below 0.11%. Despite these lower BACs, many non-student participants report having a hangover, especially when their subjective intoxication levels are high. This may be the case when alcohol consumption on the drinking occasion that results in a hangover significantly exceeds their “normal” drinking level, irrespective of whether they meet the 0.11% threshold in any of these conditions. Whereas consumers may have relative tolerance to the adverse effects at their “regular” drinking level, considerably higher alcohol intake—irrespective of the absolute amount—may consequentially result in a next-day hangover. Taken together, these findings suggest that the 0.11% threshold value as a criterion for having a hangover should be abandoned

    Genetic and geographic influence on phenotypic variation in European sarcoidosis patients

    Get PDF
    IntroductionSarcoidosis is a highly variable disease in terms of organ involvement, type of onset and course. Associations of genetic polymorphisms with sarcoidosis phenotypes have been observed and suggest genetic signatures.MethodsAfter obtaining a positive vote of the competent ethics committee we genotyped 1909 patients of the deeply phenotyped Genetic-Phenotype Relationship in Sarcoidosis (GenPhenReSa) cohort of 31 European centers in 12 countries with 116 potentially disease-relevant single-nucleotide polymorphisms (SNPs). Using a meta-analysis, we investigated the association of relevant phenotypes (acute vs. sub-acute onset, phenotypes of organ involvement, specific organ involvements, and specific symptoms) with genetic markers. Subgroups were built on the basis of geographical, clinical and hospital provision considerations.ResultsIn the meta-analysis of the full cohort, there was no significant genetic association with any considered phenotype after correcting for multiple testing. In the largest sub-cohort (Serbia), we confirmed the known association of acute onset with TNF and reported a new association of acute onset an HLA polymorphism. Multi-locus models with sets of three SNPs in different genes showed strong associations with the acute onset phenotype in Serbia and Lublin (Poland) demonstrating potential region-specific genetic links with clinical features, including recently described phenotypes of organ involvement.DiscussionThe observed associations between genetic variants and sarcoidosis phenotypes in subgroups suggest that gene–environment-interactions may influence the clinical phenotype. In addition, we show that two different sets of genetic variants are permissive for the same phenotype of acute disease only in two geographic subcohorts pointing to interactions of genetic signatures with different local environmental factors. Our results represent an important step towards understanding the genetic architecture of sarcoidosis

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security
    corecore