322 research outputs found
Modeling Dust and Starlight in Galaxies Observed by Spitzer and Herschel: The KINGFISH Sample
Interstellar dust and starlight are modeled for the galaxies of the project "Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel." The galaxies were observed by the Infrared Array Camera and the Multiband Imaging Photometer for Spitzer on Spitzer Space Telescope, and the Photodetector Array Camera and Spectrometer and the Spectral and Photometric Imaging Receiver on Herschel Space Observatory. With data from 3.6 to 500 μm, dust models are strongly constrained. Using a physical dust model, for each pixel in each galaxy we estimate (1) dust surface density, (2) dust mass fraction in polycyclic aromatic hydrocarbons (PAHs), (3) distribution of starlight intensities heating the dust, (4) total infrared (IR) luminosity emitted by the dust, and (5) IR luminosity originating in subregions with high starlight intensity. The dust models successfully reproduce the observed global and resolved spectral energy distributions. With the angular resolution of Herschel, we obtain well-resolved maps (available online) for the dust properties. As in previous studies, we find the PAH fraction q_(PAH) to be an increasing function of metallicity, with a threshold oxygen abundance Z/Z⊙ ≈ 0.1, but we find the data to be fitted best with q_(PAH) increasing linearly with log(O/H) above a threshold value of 0.15(O/H)⊙. We obtain total dust masses for each galaxy by summing the dust mass over the individual map pixels; these "resolved" dust masses are consistent with the masses inferred from a model fit to the global photometry. The global dust-to-gas ratios obtained from this study are found to correlate with galaxy metallicities. Systems with Z/Z⊙ ≳ 0.5 have most of their refractory elements locked up in dust, whereas in systems with Z/Z⊙ ≾ 0.3 most of these elements tend to remain in the gas phase. Within galaxies, we find that q_(PAH) is suppressed in regions with unusually warm dust with vL_v(70 μm) ≳ 0.4L_(dust). With knowledge of one long-wavelength flux density ratio (e.g., f₁₆₀/f₅₀₀), the minimum starlight intensity heating the dust (U_(min)) can be estimated to within ~50%, despite a variation in U_(min) of more than two orders of magnitude. For the adopted dust model, dust masses can be estimated to within ~0.2 dex accuracy using the f₁₆₀/f₅₀₀ flux ratio and the integrated dust luminosity, and to ~0.07 dex accuracy using the 500 μm luminosity vL_v(500 µm) alone. There are additional systematic errors arising from the choice of dust model, but these are hard to estimate. These calibrated prescriptions for estimating starlight heating intensity and dust mass may be useful for studies of high-redshift galaxies
Common-Resolution Convolution Kernels for Space- and Ground-Based Telescopes
Multi-wavelength study of extended astronomical objects requires combining
images from instruments with differing point spread functions (PSFs). We
describe the construction of convolution kernels that allow one to generate
(multi-wavelength) images with a common PSF, thus preserving the colors of the
astronomical sources. We generate convolution kernels for the cameras of the
Spitzer Space Telescope, Herschel Space Observatory, Galaxy Evolution Explorer
(GALEX), Wide-field Infrared Survey Explorer (WISE), ground-based optical
telescopes (Moffat functions and sum of Gaussians), and Gaussian PSFs. These
kernels allow the study of the Spectral Energy Distribution (SED) of extended
objects, preserving the characteristic SED in each pixel. The convolution
kernels and the IDL packages used to construct and use them are made publicly
available
Dust models post-Planck: constraining the far-infrared opacity of dust in the diffuse interstellar medium
We compare the performance of several dust models in reproducing the dust
spectral energy distribution (SED) per unit extinction in the diffuse
interstellar medium (ISM). We use our results to constrain the variability of
the optical properties of big grains in the diffuse ISM, as published by the
Planck collaboration.
We use two different techniques to compare the predictions of dust models to
data from the Planck HFI, IRAS and SDSS surveys. First, we fit the far-infrared
emission spectrum to recover the dust extinction and the intensity of the
interstellar radiation field (ISRF). Second, we infer the ISRF intensity from
the total power emitted by dust per unit extinction, and then predict the
emission spectrum. In both cases, we test the ability of the models to
reproduce dust emission and extinction at the same time.
We identify two issues. Not all models can reproduce the average dust
emission per unit extinction: there are differences of up to a factor
between models, and the best accord between model and observation is obtained
with the more emissive grains derived from recent laboratory data on silicates
and amorphous carbons. All models fail to reproduce the variations in the
emission per unit extinction if the only variable parameter is the ISRF
intensity: this confirms that the optical properties of dust are indeed
variable in the diffuse ISM.
Diffuse ISM observations are consistent with a scenario where both ISRF
intensity and dust optical properties vary. The ratio of the far-infrared
opacity to the band extinction cross-section presents variations of the
order of ( in extreme cases), while ISRF intensity varies
by ( in extreme cases). This must be accounted for in
future modelling.Comment: A&A, in pres
Quantifying non-star formation associated 8um dust emission in NGC 628
Combining Ha and IRAC images of the nearby spiral galaxy NGC 628, we find
that between 30-43% of its 8um dust emission is not related to recent star
formation. Contributions from dust heated by young stars are separated by
identifying HII regions in the Ha map and using these areas as a mask to
determine the 8um dust emission that must be due to heating by older stars.
Corrections are made for sub-detection-threshold HII regions, photons escaping
from HII regions and for young stars not directly associated to HII regions
(i.e. 10-100 Myr old stars). A simple model confirms this amount of 8um
emission can be expected given dust and PAH absorption cross-sections, a
realistic star-formation history, and the observed optical extinction values. A
Fourier power spectrum analysis indicates that the 8um dust emission is more
diffuse than the Ha emission (and similar to observed HI), supporting our
analysis that much of the 8um-emitting dust is heated by older stars. The 8um
dust-to-Ha emission ratio declines with galactocentric radius both within and
outside of HII regions, probably due to a radial increase in disk transparency.
In the course of this work, we have also found that intrinsic diffuse Ha
fractions may be lower than previously thought in galaxies, if the differential
extinction between HII regions and diffuse regions is taken into account.Comment: 14 pages, 11 figures, accepted in Ap
Large-scale filaments associated with Milky Way spiral arms
The ubiquity of filamentary structure at various scales through out the
Galaxy has triggered a renewed interest in their formation, evolution, and role
in star formation. The largest filaments can reach up to Galactic scale as part
of the spiral arm structure. However, such large scale filaments are hard to
identify systematically due to limitations in identifying methodology (i.e., as
extinction features). We present a new approach to directly search for the
largest, coldest, and densest filaments in the Galaxy, making use of sensitive
Herschel Hi-GAL data complemented by spectral line cubes. We present a sample
of the 9 most prominent Herschel filaments, including 6 identified from a pilot
search field plus 3 from outside the field. These filaments measure 37-99 pc
long and 0.6-3.0 pc wide with masses (0.5-8.3), and
beam-averaged (, or 0.4-0.7 pc) peak H column densities of
(1.7-9.3). The bulk of the filaments are
relatively cold (17-21 K), while some local clumps have a dust temperature up
to 25-47 K. All the filaments are located within <~60 pc from the Galactic
mid-plane. Comparing the filaments to a recent spiral arm model incorporating
the latest parallax measurements, we find that 7/9 of them reside within arms,
but most are close to arm edges. These filaments are comparable in length to
the Galactic scale height and therefore are not simply part of a grander
turbulent cascade.Comment: Published 2015MNRAS.450.4043W; this version contains minor proof
corrections. FT-based background removal code at
https://github.com/esoPanda/FTbg SED fitting code at
http://hi-gal-sed-fitter.readthedocs.org 3D interactive visualization at
http://www.eso.org/~kwan
The Spatial Distribution of Dust and Stellar Emission of the Magellanic Clouds
We study the emission by dust and stars in the Large and Small Magellanic
Clouds, a pair of low-metallicity nearby galaxies, as traced by their spatially
resolved spectral energy distributions (SEDs). This project combines Herschel
Space Observatory PACS and SPIRE far-infrared photometry with other data at
infrared and optical wavelengths. We build maps of dust and stellar luminosity
and mass of both Magellanic Clouds, and analyze the spatial distribution of
dust/stellar luminosity and mass ratios. These ratios vary considerably
throughout the galaxies, generally between the range and .
We observe that the dust/stellar ratios depend on the interstellar medium (ISM)
environment, such as the distance from currently or previously star-forming
regions, and on the intensity of the interstellar radiation field (ISRF). In
addition, we construct star formation rate (SFR) maps, and find that the SFR is
correlated with the dust/stellar luminosity and dust temperature in both
galaxies, demonstrating the relation between star formation, dust emission and
heating, though these correlations exhibit substantial scatter.Comment: 15 pages, 18 figures; ApJ, in press; version published in the journal
will have higher-resolution figure
Dissecting the origin of the submillimeter emission in nearby galaxies with Herschel and LABOCA
We model the infrared to submillimeter spectral energy distribution of 11
nearby galaxies of the KINGFISH sample using Spitzer and Herschel data and
compare model extrapolations at 870um (using different fitting techniques) with
LABOCA 870um observations. We investigate how the differences between
predictions and observations vary with model assumptions or environment. At
global scales, we find that modified blackbody models using realistic cold
emissivity indices (beta_c=2 or 1.5) are able to reproduce the 870um observed
emission within the uncertainties for most of the sample. Low values
(beta_c<1.3) would be required in NGC0337, NGC1512 and NGC7793. At local
scales, we observe a systematic 870um excess when using beta_=2.0. The
beta_c=1.5 or the Draine and Li (2007) models can reconcile predictions with
observations in part of the disks. Some of the remaining excesses occur towards
the centres and can be partly or fully accounted for by non-dust contributions
such as CO(3-2) or, to a lesser extent, free-free or synchrotron emission. In
three non-barred galaxies, the remaining excesses rather occur in the disk
outskirts. This could be a sign of a flattening of the submm slope (and
decrease of the effective emissivity index) with radius in these objects.Comment: 31 pages (including appendix), 7 figures, accepted for publication in
MNRA
Mapping the cold dust temperatures and masses of nearby Kingfish galaxies with Herschel
Taking advantage of the sensitivity and angular resolution of the Herschel
Space Observatory at far-infrared and submm wavelengths, we aim to characterize
the physical properties of cold dust within nearby galaxies and study the
robustness of the parameters we derive using different modified blackbody
models. For a pilot subsample of the KINGFISH program, we perform 2 temperature
fits of the Spitzer and Herschel photometric data (24 to 500um), with a warm
and a cold component, globally and in each resolution element.At global scales,
we observe ranges of values for beta_c(0.8 to 2.5) and Tc(19.1 to 25.1K).We
compute maps of our parameters with beta fixed or free to test the robustness
of the temperature and dust surface density maps we deduce. When the emissivity
is fixed, we observe temperature gradients as a function of radius.When the
emissivity is fitted as a free parameter, barred galaxies tend to have uniform
fitted emissivities.Gathering resolved elements in a Tc-beta_c diagram
underlines an anti-correlation between the two parameters.It remains difficult
to assess whether the dominant effect is the physics of dust grains, noise, or
mixing along the line of sight and in the beam. We finally observe in both
cases that the dust column density peaks in central regions of galaxies and bar
ends (coinciding with molecular gas density enhancements usually found in these
locations).We also quantify how the total dust mass varies with our assumptions
about the emissivity index as well as the influence of the wavelength coverage
used in the fits. We show that modified blackbody fits using a shallow
emissivity (beta_c < 2.0) lead to significantly lower dust masses compared to
the beta_c < 2.0 case, with dust masses lower by up to 50% if beta_c=1.5 for
instance.The working resolution affects our total dust mass estimates: masses
increase from global fits to spatially-resolved fits.Comment: 26 pages, 12 figures, 4 tables, accepted for publication in MNRAS,
2012 June 2
- …
