322 research outputs found

    Etnopsicología en Antonio Machado

    Get PDF

    Modeling Dust and Starlight in Galaxies Observed by Spitzer and Herschel: The KINGFISH Sample

    Get PDF
    Interstellar dust and starlight are modeled for the galaxies of the project "Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel." The galaxies were observed by the Infrared Array Camera and the Multiband Imaging Photometer for Spitzer on Spitzer Space Telescope, and the Photodetector Array Camera and Spectrometer and the Spectral and Photometric Imaging Receiver on Herschel Space Observatory. With data from 3.6 to 500 μm, dust models are strongly constrained. Using a physical dust model, for each pixel in each galaxy we estimate (1) dust surface density, (2) dust mass fraction in polycyclic aromatic hydrocarbons (PAHs), (3) distribution of starlight intensities heating the dust, (4) total infrared (IR) luminosity emitted by the dust, and (5) IR luminosity originating in subregions with high starlight intensity. The dust models successfully reproduce the observed global and resolved spectral energy distributions. With the angular resolution of Herschel, we obtain well-resolved maps (available online) for the dust properties. As in previous studies, we find the PAH fraction q_(PAH) to be an increasing function of metallicity, with a threshold oxygen abundance Z/Z⊙ ≈ 0.1, but we find the data to be fitted best with q_(PAH) increasing linearly with log(O/H) above a threshold value of 0.15(O/H)⊙. We obtain total dust masses for each galaxy by summing the dust mass over the individual map pixels; these "resolved" dust masses are consistent with the masses inferred from a model fit to the global photometry. The global dust-to-gas ratios obtained from this study are found to correlate with galaxy metallicities. Systems with Z/Z⊙ ≳ 0.5 have most of their refractory elements locked up in dust, whereas in systems with Z/Z⊙ ≾ 0.3 most of these elements tend to remain in the gas phase. Within galaxies, we find that q_(PAH) is suppressed in regions with unusually warm dust with vL_v(70 μm) ≳ 0.4L_(dust). With knowledge of one long-wavelength flux density ratio (e.g., f₁₆₀/f₅₀₀), the minimum starlight intensity heating the dust (U_(min)) can be estimated to within ~50%, despite a variation in U_(min) of more than two orders of magnitude. For the adopted dust model, dust masses can be estimated to within ~0.2 dex accuracy using the f₁₆₀/f₅₀₀ flux ratio and the integrated dust luminosity, and to ~0.07 dex accuracy using the 500 μm luminosity vL_v(500 µm) alone. There are additional systematic errors arising from the choice of dust model, but these are hard to estimate. These calibrated prescriptions for estimating starlight heating intensity and dust mass may be useful for studies of high-redshift galaxies

    Common-Resolution Convolution Kernels for Space- and Ground-Based Telescopes

    Full text link
    Multi-wavelength study of extended astronomical objects requires combining images from instruments with differing point spread functions (PSFs). We describe the construction of convolution kernels that allow one to generate (multi-wavelength) images with a common PSF, thus preserving the colors of the astronomical sources. We generate convolution kernels for the cameras of the Spitzer Space Telescope, Herschel Space Observatory, Galaxy Evolution Explorer (GALEX), Wide-field Infrared Survey Explorer (WISE), ground-based optical telescopes (Moffat functions and sum of Gaussians), and Gaussian PSFs. These kernels allow the study of the Spectral Energy Distribution (SED) of extended objects, preserving the characteristic SED in each pixel. The convolution kernels and the IDL packages used to construct and use them are made publicly available

    Dust models post-Planck: constraining the far-infrared opacity of dust in the diffuse interstellar medium

    Full text link
    We compare the performance of several dust models in reproducing the dust spectral energy distribution (SED) per unit extinction in the diffuse interstellar medium (ISM). We use our results to constrain the variability of the optical properties of big grains in the diffuse ISM, as published by the Planck collaboration. We use two different techniques to compare the predictions of dust models to data from the Planck HFI, IRAS and SDSS surveys. First, we fit the far-infrared emission spectrum to recover the dust extinction and the intensity of the interstellar radiation field (ISRF). Second, we infer the ISRF intensity from the total power emitted by dust per unit extinction, and then predict the emission spectrum. In both cases, we test the ability of the models to reproduce dust emission and extinction at the same time. We identify two issues. Not all models can reproduce the average dust emission per unit extinction: there are differences of up to a factor 2\sim2 between models, and the best accord between model and observation is obtained with the more emissive grains derived from recent laboratory data on silicates and amorphous carbons. All models fail to reproduce the variations in the emission per unit extinction if the only variable parameter is the ISRF intensity: this confirms that the optical properties of dust are indeed variable in the diffuse ISM. Diffuse ISM observations are consistent with a scenario where both ISRF intensity and dust optical properties vary. The ratio of the far-infrared opacity to the VV band extinction cross-section presents variations of the order of 20%\sim20\% (4050%40-50\% in extreme cases), while ISRF intensity varies by 30%\sim30\% (60%\sim60\% in extreme cases). This must be accounted for in future modelling.Comment: A&A, in pres

    Quantifying non-star formation associated 8um dust emission in NGC 628

    Full text link
    Combining Ha and IRAC images of the nearby spiral galaxy NGC 628, we find that between 30-43% of its 8um dust emission is not related to recent star formation. Contributions from dust heated by young stars are separated by identifying HII regions in the Ha map and using these areas as a mask to determine the 8um dust emission that must be due to heating by older stars. Corrections are made for sub-detection-threshold HII regions, photons escaping from HII regions and for young stars not directly associated to HII regions (i.e. 10-100 Myr old stars). A simple model confirms this amount of 8um emission can be expected given dust and PAH absorption cross-sections, a realistic star-formation history, and the observed optical extinction values. A Fourier power spectrum analysis indicates that the 8um dust emission is more diffuse than the Ha emission (and similar to observed HI), supporting our analysis that much of the 8um-emitting dust is heated by older stars. The 8um dust-to-Ha emission ratio declines with galactocentric radius both within and outside of HII regions, probably due to a radial increase in disk transparency. In the course of this work, we have also found that intrinsic diffuse Ha fractions may be lower than previously thought in galaxies, if the differential extinction between HII regions and diffuse regions is taken into account.Comment: 14 pages, 11 figures, accepted in Ap

    Large-scale filaments associated with Milky Way spiral arms

    Get PDF
    The ubiquity of filamentary structure at various scales through out the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e., as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL data complemented by spectral line cubes. We present a sample of the 9 most prominent Herschel filaments, including 6 identified from a pilot search field plus 3 from outside the field. These filaments measure 37-99 pc long and 0.6-3.0 pc wide with masses (0.5-8.3)×104M\times10^4 \, M_\odot, and beam-averaged (28"28", or 0.4-0.7 pc) peak H2_2 column densities of (1.7-9.3)×1022cm2\times 10^{22} \, \rm{cm^{-2}}. The bulk of the filaments are relatively cold (17-21 K), while some local clumps have a dust temperature up to 25-47 K. All the filaments are located within <~60 pc from the Galactic mid-plane. Comparing the filaments to a recent spiral arm model incorporating the latest parallax measurements, we find that 7/9 of them reside within arms, but most are close to arm edges. These filaments are comparable in length to the Galactic scale height and therefore are not simply part of a grander turbulent cascade.Comment: Published 2015MNRAS.450.4043W; this version contains minor proof corrections. FT-based background removal code at https://github.com/esoPanda/FTbg SED fitting code at http://hi-gal-sed-fitter.readthedocs.org 3D interactive visualization at http://www.eso.org/~kwan

    The Spatial Distribution of Dust and Stellar Emission of the Magellanic Clouds

    Full text link
    We study the emission by dust and stars in the Large and Small Magellanic Clouds, a pair of low-metallicity nearby galaxies, as traced by their spatially resolved spectral energy distributions (SEDs). This project combines Herschel Space Observatory PACS and SPIRE far-infrared photometry with other data at infrared and optical wavelengths. We build maps of dust and stellar luminosity and mass of both Magellanic Clouds, and analyze the spatial distribution of dust/stellar luminosity and mass ratios. These ratios vary considerably throughout the galaxies, generally between the range 0.01Ldust/L0.60.01\leq L_{\rm dust}/L_\ast\leq 0.6 and 104Mdust/M4×10310^{-4}\leq M_{\rm dust}/M_\ast\leq 4\times10^{-3}. We observe that the dust/stellar ratios depend on the interstellar medium (ISM) environment, such as the distance from currently or previously star-forming regions, and on the intensity of the interstellar radiation field (ISRF). In addition, we construct star formation rate (SFR) maps, and find that the SFR is correlated with the dust/stellar luminosity and dust temperature in both galaxies, demonstrating the relation between star formation, dust emission and heating, though these correlations exhibit substantial scatter.Comment: 15 pages, 18 figures; ApJ, in press; version published in the journal will have higher-resolution figure

    Dissecting the origin of the submillimeter emission in nearby galaxies with Herschel and LABOCA

    Get PDF
    We model the infrared to submillimeter spectral energy distribution of 11 nearby galaxies of the KINGFISH sample using Spitzer and Herschel data and compare model extrapolations at 870um (using different fitting techniques) with LABOCA 870um observations. We investigate how the differences between predictions and observations vary with model assumptions or environment. At global scales, we find that modified blackbody models using realistic cold emissivity indices (beta_c=2 or 1.5) are able to reproduce the 870um observed emission within the uncertainties for most of the sample. Low values (beta_c<1.3) would be required in NGC0337, NGC1512 and NGC7793. At local scales, we observe a systematic 870um excess when using beta_=2.0. The beta_c=1.5 or the Draine and Li (2007) models can reconcile predictions with observations in part of the disks. Some of the remaining excesses occur towards the centres and can be partly or fully accounted for by non-dust contributions such as CO(3-2) or, to a lesser extent, free-free or synchrotron emission. In three non-barred galaxies, the remaining excesses rather occur in the disk outskirts. This could be a sign of a flattening of the submm slope (and decrease of the effective emissivity index) with radius in these objects.Comment: 31 pages (including appendix), 7 figures, accepted for publication in MNRA

    Mapping the cold dust temperatures and masses of nearby Kingfish galaxies with Herschel

    Get PDF
    Taking advantage of the sensitivity and angular resolution of the Herschel Space Observatory at far-infrared and submm wavelengths, we aim to characterize the physical properties of cold dust within nearby galaxies and study the robustness of the parameters we derive using different modified blackbody models. For a pilot subsample of the KINGFISH program, we perform 2 temperature fits of the Spitzer and Herschel photometric data (24 to 500um), with a warm and a cold component, globally and in each resolution element.At global scales, we observe ranges of values for beta_c(0.8 to 2.5) and Tc(19.1 to 25.1K).We compute maps of our parameters with beta fixed or free to test the robustness of the temperature and dust surface density maps we deduce. When the emissivity is fixed, we observe temperature gradients as a function of radius.When the emissivity is fitted as a free parameter, barred galaxies tend to have uniform fitted emissivities.Gathering resolved elements in a Tc-beta_c diagram underlines an anti-correlation between the two parameters.It remains difficult to assess whether the dominant effect is the physics of dust grains, noise, or mixing along the line of sight and in the beam. We finally observe in both cases that the dust column density peaks in central regions of galaxies and bar ends (coinciding with molecular gas density enhancements usually found in these locations).We also quantify how the total dust mass varies with our assumptions about the emissivity index as well as the influence of the wavelength coverage used in the fits. We show that modified blackbody fits using a shallow emissivity (beta_c < 2.0) lead to significantly lower dust masses compared to the beta_c < 2.0 case, with dust masses lower by up to 50% if beta_c=1.5 for instance.The working resolution affects our total dust mass estimates: masses increase from global fits to spatially-resolved fits.Comment: 26 pages, 12 figures, 4 tables, accepted for publication in MNRAS, 2012 June 2
    corecore