73 research outputs found

    ECONOMIC EFFECTS OF CO-EXISTENCE MEASURES IN MAIZE CROP AND SEED PRODUCTION - A CASE STUDY OF FRANCE

    Get PDF
    Paper prepared for presentation at the Second International Conference on Coexistence between Genetically Modified (GM) and non-GM based Agricultural Supply Chains (GMCC) Montpellier (France), 14th and 15th November 2005Genetic engineering, GMO, Maize, Co-existence, Agricultural and Food Policy, L51, O32,

    BCI-Based Navigation in Virtual and Real Environments

    Get PDF
    A Brain-Computer Interface (BCI) is a system that enables people to control an external device with their brain activity, without the need of any muscular activity. Researchers in the BCI field aim to develop applications to improve the quality of life of severely disabled patients, for whom a BCI can be a useful channel for interaction with their environment. Some of these systems are intended to control a mobile device (e. g. a wheelchair). Virtual Reality is a powerful tool that can provide the subjects with an opportunity to train and to test different applications in a safe environment. This technical review will focus on systems aimed at navigation, both in virtual and real environments.This work was partially supported by the Innovation, Science and Enterprise Council of the Junta de Andalucía (Spain), project P07-TIC-03310, the Spanish Ministry of Science and Innovation, project TEC 2011-26395 and by the European fund ERDF

    Training in realistic virtual environments: Impact on user performance in a motor imagery-based Brain-Computer-Interface

    Get PDF
    A brain–computer interface (BCI) is a system that enables people to control an external device by means of their brain activity, without the need of performing muscular activity. BCI systems are normally first tested on a controlled environment before being used in a real, daily scenario. While this is due to security reasons, the conditions that BCI systems users will eventually face in their usual environment may affect their performance in an unforeseen way. In this paper, we try to bridge this gap by presenting a trained BCI user a virtual environment that includes realistic distracting stimuli and testing whether the complexity or the type of such stimuli affects user performance. 11 subjects navigated two virtual environments: a static park and the same one with visual and auditory stimuli simulating typical distractors from a real park. No significant differences were found when using a realistic environment; in other words, the presence of different distracting stimuli did not worsen user performance.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Application of DEXiPM as a tool to co-design pome fruit systems towards sustainability

    Get PDF
    The design of fruit production systems considering the latest innovations is a real challenge. Before being tested in an experimental station or in real farm conditions, the global sustainability of these newly designed orchards needs to be evaluated. Based on the DEXiPM® model, the DEXiPM-pomefruit tool has been designed to make an ex ante assessment of the sustainability of innovative orchard systems. This model is based on a decision tree breaking the decisional problems of sustainability assessment into simpler units, referring to the economic, social and environmental dimensions of sustainability. Based on two case studies, we present here the steps and thought process of our group to improve fruit production systems towards innovative and integrated production systems. DEXiPM-pomefruit tool has been tested on apple and pear production systems in the frame of a working group of European researchers. It proved to be sufficiently reliable to select the most promising innovations in a given context. DEXiPM-pomefruit was also used as a dashboard to determine strengths and weaknesses of the tested production systems and therefore to identify improvements

    Gene expression profile of peripheral blood lymphocytes from renal cell carcinoma patients treated with IL-2, Interferon-α and dendritic cell vaccine

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e50221, doi:10.1371/journal.pone.0050221.Lymphocytes are a key component of the immune system and their differentiation and function are directly influenced by cancer. We examined peripheral blood lymphocyte (PBL) gene expression as a biomarker of illness and treatment effect using the Affymetrix Human Gene ST1 platform in patients with metastatic renal cell carcinoma (mRCC) who received combined treatment with IL-2, interferon-?-2a and dendritic cell vaccine. We examined gene expression, cytokine levels in patient serum and lymphocyte subsets as determined by flow cytometry (FCM). Pre-treatment PBLs from patients with mRCC exhibit a gene expression profile and serum cytokine profile consistent with inflammation and proliferation not found in healthy donors (HD). PBL gene expression from patients with mRCC showed increased mRNA of genes involved with T-cell and TREG-cell activation pathways, which was also reflected in lymphocyte subset distribution. Overall, PBL gene expression post-treatment (POST) was not significantly different than pre-treatment (PRE). Nevertheless, treatment related changes in gene expression (post-treatment minus pre-treatment) revealed an increased expression of T-cell and B-cell receptor signaling pathways in responding (R) patients compared to non-responding (NR) patients. In addition, we observed down-regulation of TREG-cell pathways post-treatment in R vs. NR patients. While exploratory in nature, this study supports the hypothesis that enhanced inflammatory cytotoxic pathways coupled with blunting of the regulatory pathways is necessary for effective anti-cancer activity associated with immune therapy. This type of analysis can potentially identify additional immune therapeutic targets in patients with mRCC.This work was supported by grants from the National Institutes of Health (RO1 CA5648, R21CA112761, P20RR016437, and P30CA023108)

    Coexistence of genetically modified (GM) and non-GM crops in the European Union. A review

    Full text link

    AusTraits, a curated plant trait database for the Australian flora

    Get PDF
    We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge

    A model to evaluate the consequences of GM and non-GM segregation scenarios on GM crop placement in the landscape and cross-pollination risk management

    No full text
    Under European regulations, a product is labelled as GM (genetically modified) if more than 0.9% of one of its ingredients originates from GM material. During collection, crops from many fields are combined to fill a silo. To avoid the risk of mixing GM and non-GM harvests, it is possible to dedicate a silo to a given crop or to define specific times for GM and non-GM product delivery to silos. To evaluate these scenarios for the maize supply chain, we propose a combination of a model of farmers' varietal choice (based on profit evaluation at the field level, taking into account transport costs as well as price and cost differences between GM and non-GM products) and a spatially-explicit gene flow model. Consequences of different segregation strategies for collection zone organization can therefore be compared while using the percentage of GM grain in non-GM crops due to cross-pollination. The 'temporal' strategy leads to a uniform area of GM or non-GM maize, depending on the prices and the weather risks. The 'spatial' strategy leads to areas of either GM or non-GM crops surrounding the corresponding collection silo. GM presence in non-GM batches depends on the size of the non-GM zone and on the prevailing wind. We show how divergent commercial strategies of grain merchants could have consequences on GM presence in non-GM batches.GMO Co-existence Decision model Landscape Farming system
    corecore