72 research outputs found

    DynoPlan: Combining Motion Planning and Deep Neural Network based Controllers for Safe HRL

    Get PDF
    Many realistic robotics tasks are best solved compositionally, through control architectures that sequentially invoke primitives and achieve error correction through the use of loops and conditionals taking the system back to alternative earlier states. Recent end-to-end approaches to task learning attempt to directly learn a single controller that solves an entire task, but this has been difficult for complex control tasks that would have otherwise required a diversity of local primitive moves, and the resulting solutions are also not easy to inspect for plan monitoring purposes. In this work, we aim to bridge the gap between hand designed and learned controllers, by representing each as an option in a hybrid hierarchical Reinforcement Learning framework - DynoPlan. We extend the options framework by adding a dynamics model and the use of a nearness-to-goal heuristic, derived from demonstrations. This translates the optimization of a hierarchical policy controller to a problem of planning with a model predictive controller. By unrolling the dynamics of each option and assessing the expected value of each future state, we can create a simple switching controller for choosing the optimal policy within a constrained time horizon similarly to hill climbing heuristic search. The individual dynamics model allows each option to iterate and be activated independently of the specific underlying instantiation, thus allowing for a mix of motion planning and deep neural network based primitives. We can assess the safety regions of the resulting hybrid controller by investigating the initiation sets of the different options, and also by reasoning about the completeness and performance guarantees of the underpinning motion planners.Comment: RLD

    Composing Diverse Policies for Temporally Extended Tasks

    Get PDF
    Robot control policies for temporally extended and sequenced tasks are often characterized by discontinuous switches between different local dynamics. These change-points are often exploited in hierarchical motion planning to build approximate models and to facilitate the design of local, region-specific controllers. However, it becomes combinatorially challenging to implement such a pipeline for complex temporally extended tasks, especially when the sub-controllers work on different information streams, time scales and action spaces. In this paper, we introduce a method that can compose diverse policies comprising motion planning trajectories, dynamic motion primitives and neural network controllers. We introduce a global goal scoring estimator that uses local, per-motion primitive dynamics models and corresponding activation state-space sets to sequence diverse policies in a locally optimal fashion. We use expert demonstrations to convert what is typically viewed as a gradient-based learning process into a planning process without explicitly specifying pre- and post-conditions. We first illustrate the proposed framework using an MDP benchmark to showcase robustness to action and model dynamics mismatch, and then with a particularly complex physical gear assembly task, solved on a PR2 robot. We show that the proposed approach successfully discovers the optimal sequence of controllers and solves both tasks efficiently.Comment: arXiv admin note: substantial text overlap with arXiv:1906.1009

    Vid2Param: Modelling of Dynamics Parameters from Video

    Get PDF
    Videos provide a rich source of information, but it is generally hard to extract dynamical parameters of interest. Inferring those parameters from a video stream would be beneficial for physical reasoning. Robots performing tasks in dynamic environments would benefit greatly from understanding the underlying environment motion, in order to make future predictions and to synthesize effective control policies that use this inductive bias. Online physical reasoning is therefore a fundamental requirement for robust autonomous agents. When the dynamics involves multiple modes (due to contacts or interactions between objects) and sensing must proceed directly from a rich sensory stream such as video, then traditional methods for system identification may not be well suited. We propose an approach wherein fast parameter estimation can be achieved directly from video. We integrate a physically based dynamics model with a recurrent variational autoencoder, by introducing an additional loss to enforce desired constraints. The model, which we call Vid2Param, can be trained entirely in simulation, in an end-to-end manner with domain randomization, to perform online system identification, and make probabilistic forward predictions of parameters of interest. This enables the resulting model to encode parameters such as position, velocity, restitution, air drag and other physical properties of the system. We illustrate the utility of this in physical experiments wherein a PR2 robot with a velocity constrained arm must intercept an unknown bouncing ball with partly occluded vision, by estimating the physical parameters of this ball directly from the video trace after the ball is released.Comment: Accepted as a journal paper at IEEE Robotics and Automation Letters (RA-L

    Using Causal Analysis to Learn Specifications from Task Demonstrations

    Get PDF
    Learning models of user behaviour is an important problem that is broadly applicable across many application domains requiring human-robot interaction. In this work we show that it is possible to learn a generative model for distinct user behavioral types, extracted from human demonstrations, by enforcing clustering of preferred task solutions within the latent space. We use this model to differentiate between user types and to find cases with overlapping solutions. Moreover, we can alter an initially guessed solution to satisfy the preferences that constitute a particular user type by backpropagating through the learned differentiable model. An advantage of structuring generative models in this way is that it allows us to extract causal relationships between symbols that might form part of the user's specification of the task, as manifested in the demonstrations. We show that the proposed method is capable of correctly distinguishing between three user types, who differ in degrees of cautiousness in their motion, while performing the task of moving objects with a kinesthetically driven robot in a tabletop environment. Our method successfully identifies the correct type, within the specified time, in 99% [97.8 - 99.8] of the cases, which outperforms an IRL baseline. We also show that our proposed method correctly changes a default trajectory to one satisfying a particular user specification even with unseen objects. The resulting trajectory is shown to be directly implementable on a PR2 humanoid robot completing the same task

    Analysis of environmental influences in nuclear half-life measurements exhibiting time-dependent decay rates

    Full text link
    In a recent series of papers evidence has been presented for correlations between solar activity and nuclear decay rates. This includes an apparent correlation between Earth-Sun distance and data taken at Brookhaven National Laboratory (BNL), and at the Physikalisch-Technische Bundesanstalt (PTB). Although these correlations could arise from a direct interaction between the decaying nuclei and some particles or fields emanating from the Sun, they could also represent an "environmental" effect arising from a seasonal variation of the sensitivities of the BNL and PTB detectors due to changes in temperature, relative humidity, background radiation, etc. In this paper, we present a detailed analysis of the responses of the detectors actually used in the BNL and PTB experiments, and show that sensitivities to seasonal variations in the respective detectors are likely too small to produce the observed fluctuations

    Extensive characterization of NF-κB binding uncovers non-canonical motifs and advances the interpretation of genetic functional traits

    Get PDF
    Background Genetic studies have provided ample evidence of the influence of non-coding DNA polymorphisms on trait variance, particularly those occurring within transcription factor binding sites. Protein binding microarrays and other platforms that can map these sites with great precision have enhanced our understanding of how a single nucleotide polymorphism can alter binding potential within an in vitro setting, allowing for greater predictive capability of its effect on a transcription factor binding site. Results We have used protein binding microarrays and electrophoretic mobility shift assay-sequencing (EMSA-Seq), a deep sequencing based method we developed to analyze nine distinct human NF-κB dimers. This family of transcription factors is one of the most extensively studied, but our understanding of its DNA binding preferences has been limited to the originally described consensus motif, GGRRNNYYCC. We highlight differences between NF-κB family members and also put under the spotlight non-canonical motifs that have so far received little attention. We utilize our data to interpret the binding of transcription factors between individuals across 1,405 genomic regions laden with single nucleotide polymorphisms. We also associated binding correlations made using our data with risk alleles of disease and demonstrate its utility as a tool for functional studies of single nucleotide polymorphisms in regulatory regions. Conclusions NF-κB dimers bind specifically to non-canonical motifs and these can be found within genomic regions in which a canonical motif is not evident. Binding affinity data generated with these different motifs can be used in conjunction with data from chromatin immunoprecipitation-sequencing (ChIP-Seq) to enable allele-specific analyses of expression and transcription factor-DNA interactions on a genome-wide scale.Wellcome Trust (London, England) (grant 075491/Z/04)European Commission (Seventh Framework Programme FP7/2007-2013: Model-In (222008))European Commission (Seventh Framework Programme FP7 ITN Network INTEGER (214902))Medical Research Council (Canada) (MRC project grant G0700818
    corecore