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Abstract
Informative path-planning is a well established approach to visual-servoing and active viewpoint selection in robotics, but
typically assumes that a suitable cost function or goal state is known. This work considers the inverse problem, where the
goal of the task is unknown, and a reward function needs to be inferred from exploratory example demonstrations provided
by a demonstrator, for use in a downstream informative path-planning policy. Unfortunately, many existing reward inference
strategies are unsuited to this class of problems, due to the exploratory nature of the demonstrations. In this paper, we propose
an alternative approach to cope with the class of problems where these sub-optimal, exploratory demonstrations occur. We
hypothesise that, in tasks which require discovery, successive states of any demonstration are progressively more likely to
be associated with a higher reward, and use this hypothesis to generate time-based binary comparison outcomes and infer
reward functions that support these ranks, under a probabilistic generative model. We formalise this probabilistic temporal
ranking approach and show that it improves upon existing approaches to perform reward inference for autonomous ultrasound
scanning, a novel application of learning from demonstration in medical imaging while also being of value across a broad
range of goal-oriented learning from demonstration tasks.

Keywords Visual servoing · Reward inference · Probabilistic temporal ranking

1 Introduction

Informative path-planning for visual servo control and
active viewpoint selection is a key ability for modern day
autonomous robotics. However, these approaches typically
assume that some notion of a goal or desired viewpoint is
available, which may not always be the case. This work
considers the case where the goal or cost function of an
informative path-planning task is unknown, and needs to
be inferred from expert demonstrations. The ability to teach
robotic agents using expert demonstration of tasks promises
exciting developments across several sectors of industry.
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This is particularly true of medical imaging, where task and
anatomy variability can make it challenging to provide spec-
ifications and describe tasks directly, and it may be more
natural to consider an apprenticeship learning (Abbeel &Ng,
2004) approach.

Indirect imitation learning (Bagnell, 2015) approaches
formulate apprenticeship learning as a search problemwithin
a solution space of plans, where some notional (unknown)
reward function induces the demonstrated behaviour. A key
learning problem is then to estimate this reward function.
This reward inference approach is commonly known as
inverse reinforcement learning (IRL) (Ng & Russell, 2000).

However, as illustrated in the ultrasound scanning task of
Fig. 1, the demonstration process often followed by medi-
cal practitioners is a naturally exploratory one, involving an
information gathering phase in addition to an optimisation
phase, or a generally greedy motion towards a desired view-
point. Human demonstrators regularly act so as to improve
their states in complex tasks. For example, in a study on
human approaches to combinatorial optimisation, Murawski
and Bossaerts (2016) found that humans behave relatively
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Fig. 1 This work introduces a temporal ranking strategy to learn reward
functions a from human demonstrations b for autonomous ultrasound
scanning. Probabilistic temporal ranking can learn to identify non-
monotonically increasing rewards fromdemonstration image sequences
containing exploratory actions, and successfully associates ultrasound
features corresponding to a target object (c) with rewards (d)

greedily, following something akin to a branch-and-bound
algorithm for search. Similarly, in palpation experiments,
Konstantinova et al. (2013) showed that humans searching for
hard excursions in soft tissue searched extensively for nod-
ules, but acted greedily when these had been found, refining
the search using small focused, circularmovements.Unfortu-
nately, the exploratory nature of demonstrations such as these
poses a challenge for many existing approaches to reward
inference.

For example, the IRL approach to apprenticeship learn-
ing (Abbeel & Ng, 2004) aims to match the frequency
(counts) of features encountered in the learner’s behaviour
with those observed in demonstrations. This technique pro-
vides necessary and sufficient conditions when the reward
function is linear in the features encoding execution states,
but results in ambiguities in associating optimal policies
with reward functions or feature counts. An elegant refor-
mulation of this using the principle of maximum entropy
resolves ambiguities and results in a single optimal stochas-
tic policy. Methods for maximum-entropy IRL (Ziebart et
al., 2008; Wulfmeier et al., 2015; Levine et al., 2011) iden-
tify reward functions using maximum likelihood estimation,
typically under the assumption that the probability of seeing
a given trajectory is proportional to the exponential of the
total reward along a given path. Unfortunately, thesemethods
are fundamentally frequentist and thus struggle to cope with
repetitive sub-optimal demonstrations, as they assume that
frequent appearance implies relevance. i.e. If a feature is seen
repeatedly across demonstration trajectories, it is deemed

Fig. 2 Thiswork considers the task of learning to search for and capture
an image of a target object (2.) suspended in a scattering material (3.)
housed within a deformable container (4.). Our goal is to learn a reward
signal from demonstrations that allows us to move an ultrasound sensor
(1.) to positions that produce clear images of the target object. High
quality ultrasound images (right) captured by a human demonstrator
show high intensity contour outlines, centre the target object of interest,
and generally provide some indication of target object size

valuable, as are policies that result in observations of these
features.

This makes these approaches unsuitable for a broad class
of tasks that require exploratory actions or environment
identification during demonstration. e.g. an expert using an
ultrasound scan to locate a tumour (Fig. 1). Obtaining use-
ful ultrasound images requires contact with a deformable
body (see Fig. 2) at an appropriate position and contact force,
with image quality affected by the amount of ultrasound
gel between the body and the probe, and air pockets that
obscure object detection. This means that human demonstra-
tions are frequently and inherently sub-optimal, requiring
that a demonstrator actively search for target objects, while
attempting to locate a good viewpoint position and appro-
priate contact force. This class of demonstration violates
many of the assumptions behind existing reward inference
schemes.

In order to address this, this paper introduces probabilistic
temporal ranking (PTR), a temporal rankingmodel of reward
that addresses these limitations. PTR is a self-supervised
approach and thus does not rely on the true reward or value
function, using only a sequence of images or states to infer
underlying reward functions.

Instead of assigning reward based on the maximum
entropymodel, PTR attributes reward using a rankingmodel.
Here, we assume that, in general, an expert acts to improve
their current state. This means that it is likely that observa-
tions at a later stage in a demonstrated trajectory are more
important than those seen at an earlier stage. PTR uses this
fact to generate time-based binary comparison outcomes, and
then uses these to infer reward functions that support these
ranks, under a probabilistic generative model that combines
information about image or observation similarity (a Gaus-
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sian process reward model over a learned latent space) with
a noisy pairwise generative outcome model.

Importantly, PTR is able to handle cases where this tem-
poral improvement is unsteady and non-monotonic, with
intermediate performance dips. Experimental results show
that probabilistic temporal ranking successfully recovers
reward maps from demonstrations in tasks requiring sig-
nificant levels of exploration alongside exploitation (where
maximum entropy IRL fails), and obtains similar perfor-
mance to maximum entropy inverse IRL when optimal
demonstrations are available.

PTR is not only useful for active viewpoint selection prob-
lems, but the assumptions governing generally increasing
rewards hold for a broad class of goal-oriented control prob-
lems, for example, swinging up a pendulum, or navigating to
a specific location.

We highlight this through a number of simulated experi-
ments, and illustrate the value of our approach in a challeng-
ing ultrasound scanning application, where demonstrations
inherently contain a searching process, and show that we
can train a model to find a tumour-like mass in an imaging
phantom.1 Ultrasound imaging is a safe and low cost sensing
modality of significant promise for surgical robotics, and is
already frequently used for autonomous needle steering and
tracking (Liang et al., 2010; Chatelain et al., 2013). Chate-
lain et al. (2015) propose the use of ultrasound quality maps
to improve image quality in robotic ultrasound scanning
applications. Autonomous visual servoing systems have also
been proposed in support of teleoperated ultrasound diag-
nosis (Abolmaesumi et al., 2002; Li et al., 2012), but these
techniques tend to rely on hand designed anatomical target
detectors or confidence maps. The scanner introduced in this
work is fully autonomous, and relies entirely on a reward sig-
nal learned from demonstration, in what we believe is a first
for medical imaging. Importantly, the probabilistic temporal
ranking formulation provides more signal for learning, as a
greater number of comparisons can be generated from each
demonstration trajectory. Thismeans thatwe can train amore
effective prediction model from pixels than with maximum
entropy IRL, which in turn opens up a number of avenues
towards self-supervised learning for medical imaging and
diagnosis.

In summary, the primary contributions of this paper are

– a temporal ranking reward model that allows for reward
inference fromsub-optimal, highdimensional exploratory
demonstrations, and

– a method for autonomous ultrasound scanning using
image sequence demonstrations.

1 An imaging phantom is an object that mimics the physical responses
of biological tissue, and is commonly used in medical imaging to eval-
uate and analyse imaging devices.

2 Related work

2.1 Reward or cost function inference

As mentioned previously, apprenticeship learning (Abbeel
& Ng, 2004) is an alternative to direct methods of imita-
tion learning (Bagnell, 2015) or behaviour cloning, and is
currently dominated by indirect approaches making use of
maximum entropy assumptions.

Maximum entropy or maximum likelihood inverse rein-
forcement learning models the probability of a user prefer-
ence for a given trajectory ζ as proportional to the exponential
of the total reward along the path (Ziebart et al., 2008),

p(ζ |r) ∝ exp(
∑

s,a∈ζ

rs,a). (1)

Here, s denotes a state, a an action, and rs,a the reward
obtained for taking an action in a given state. It is clear
that this reward model can be maximised by any number
of reward functions. Levine et al. (2011) use a Gaussian pro-
cess prior to constrain the reward, while Wulfmeier et al.
(2015) backpropagate directly through the reward function
using a deep neural network prior. Maximum entropy inverse
reinforcement learning approaches are typically framed as
iterative policy search, where policies are identified to max-
imise the reward model. This allows for the incorporation
of additional policy constraints and inductive biases towards
desirable behaviours, as in relative entropy search (Boularias
et al., 2011), which uses a relative entropy term to keep poli-
cies near a baseline, whilemaximising reward feature counts.
Maximum entropy policies can also be obtained directly,
bypassing reward inference stages, using adversarial imita-
tion learning (Ho & Ermon, 2016; Finn et al., 2016; Fu et al.,
2018; Ghasemipour et al., 2019), although reward prediction
is itself useful for medical imaging applications.

Althoughmaximumentropy IRL is ubiquitous, alternative
reward models have been proposed. For example, Angelov
et al. (2020) train a neural reward model using demon-
stration sequences, to schedule high level policies in long
horizon tasks. Here, they capture overhead scene images,
and train a network to predict a number between 0 and
1, assigned in increasing order to each image in a demon-
stration sequence. This ranking approach is similar to the
pairwise ranking method we propose, but, as will be shown
in later results, is limited by its rigid assumption of linearly
increasing reward. Majumdar et al. (2017) propose flexible
reward models that explicitly account for human risk sensi-
tivity. Time contrastive networks (Sermanet et al., 2018) learn
disentangled latent representations of video using time as a
supervisory signal. Here, time synchronised images taken
from multiple viewpoints are used to learn a latent embed-
ding space where similar images (captured from different
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viewpoints) are close to one another. This embedding space
can then be used to find policies from demonstrations. Time
contrastive networks use a triplet ranking loss, and are trained
using positive and negative samples (based on frame timing
margins).

Preference-based ranking of this form is widely used
in inverse reinforcement learning to rate demonstrations
(Wirth et al., 2017), and preference elicitation (Braziunas
& Boutilier, 2006) is a well established area of research.
For example, Brochu et al. (2010) use Bayesian optimisation
with a pairwise ranking model to allow users to procedurally
generate realistic animations. Lopes et al. (2009); Biyik et al.
(2020) and Tucker et al. (2020) actively query demonstrators
to learn reward functions. The latter make use of a Thursto-
nian model (Thurstone, 2017), computing the cumulative
distribution function over the difference between rewards.
This is intractable, and requires a Laplace approximation
for inference. Sugiyama et al. (2012) use preference-based
inverse reinforcement learning for dialog control. Here, dia-
log samples are annotatedwith ratings,which are used to train
a preference-based reward model. These preference elicita-
tion approaches are effective, but place a substantial labelling
burden on users. In this work, we consider the non-interactive
learning case where we are required to learn directly from
unlabelled observation traces.

A number of extensions to maximum entropy IRL have
been proposed to cope with sub-optimal demonstration
sequences, typically through the inclusion of additional
supervisory information about the quality of a demonstra-
tion sequence (Wu et al., 2019; Brown et al., 2019). In large
part, these works define demonstration quality in terms of
how noisy they are (Brown et al., 2019) or how far they devi-
ate from some perfect demonstration.However, for discovery
tasks such as ultrasound scanning, it is much harder to deter-
mine what constitutes an optimal or perfect demonstration,
as all demonstrations require a degree of exploration before
finding a good viewpoint.

Lee et al. (2016) use leveragedGaussian processes to learn
from both positive and negative demonstration examples.
Similarly, Shiarlis et al. (2016) and Valko et al. (2013) con-
sider inverse reinforcement learning in the looser case where
only a subset of demonstrations are considered expert or suc-
cessful, and the remaining ‘failures’ may contain elements
key to success, or even be unlabelled successful demonstra-
tions. These are semi-supervised learning approaches, as they
rely on additional labelling information about the quality of
demonstrations. In contrast, the PTR approach proposed in
this paper is self-supervising, as it relies on time as a super-
visory signal.

Brown et al. (2020) make use of a preference ranking
approach to improve robot policies through artificial trajec-
tory ranking using increasing levels of injected noise. Unlike
(Brown et al., 2020), which uses preference ranking over

trajectories, our work uses preference ranking within trajec-
tories, under the assumption that a demonstrator generally
acts to improve or maintain their current state. We mod-
ify a Bayesian image ranking model (Burke et al., 2017)
that accounts for potential uncertainty in this assumption,
and is less restrictive than the linearly increasing model of
Angelov et al. (2020). Bayesian ranking models (Chu &
Ghahramani, 2005) are common in other fields – for exam-
ple, TrueSkillTM (Herbrich et al., 2007) is widely used for
player performance modelling in online gaming settings, but
has also been applied to to train image-based style classifiers
in fashion applications (Kiapour et al., 2014) and to predict
the perceived safety of street scenes using binary answers to
the question “Which place looks safer?” (Naik et al., 2014).

2.2 Active viewpoint selection

Given an appropriate reward model, autonomous ultrasound
scanning requires a policy that balances both exploration
and exploitation for active viewpoint selection or informa-
tive path planning. Research on active viewpoint selection
(Sridharan et al., 2010) is concerned with agents that choose
viewpoints which optimise the quality of the visual infor-
mation they sense. Similarly, informative path planning
involves an agent choosing actions that lead to observations
which most decrease uncertainty in a model. Gaussian pro-
cesses (GP) are frequently used for informative path planning
because of their inclusion of uncertainty, data-efficiency, and
flexibility as non-parametric models.

Binney and Sukhatme (2012) use GPs with a branch and
bound algorithm, while (Cho et al., 2018) perform infor-
mative path planning using GP regression and a mutual
information action selection criterion. More general appli-
cations of GPs to control include PILCO (Deisenroth &
Rasmussen, 2011), wheremodels are optimised to learn poli-
cies for reinforcement learning control tasks, and the work
of Ling et al. (2016), which introduces a GP planning frame-
work that uses GP predictions in H-stage Bellman equations.

TheseBayesian optimisation schemes arewell established
methods for optimisation of an unknown function, and have
been applied to many problems in robotics including policy
search (Martinez-Cantin, 2017), object grasping (Yi et al.,
2016), and bipedal locomotion (Calandra et al., 2014).

By generating policies dependent on predictions for both
reward value and model uncertainty, Bayesian optimisation
provides a mechanism for making control decisions that
can both progress towards some task objective and acquire
information to reduce uncertainty. GP’s and Bayesian opti-
misation are often used together, with a GP acting as the
surrogatemodel for aBayesian optimisation planner, as in the
mobile robot path planning approaches of Martinez-Cantin
et al. (2009) and Marchant et al. (2014). Our work takes a
similar approach, using GP-based Bayesian optimisation for
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path planning in conjunction with the proposed observation
ranking reward model.

The combination of preference-based learning with a pol-
icy trading-off exploration-exploitation is commonly studied
within duelling bandit frameworks (Sui et al., 2017). Here,
instead of learning from a reward signal, a policy is required
to learn directly from preferential feedback. This differs
from the the reward inference setting studied in this paper,
where preference signals are generated a-priori by generat-
ing temporal comparisons from human demonstrations, and
not online when the policy is deployed.

3 Probabilistic temporal ranking

This paper introduces probabilistic temporal ranking (PTR),
a reward inference strategy for high dimensional exploratory
image demonstrations. Below, we first describe a fully prob-
abilistic temporal ranking model, which we then examine
using a series of simulated experiments. We then intro-
duce a deterministic neural approximation that can be effi-
ciently trained in a fully end-to-end fashion, and is more
suited to larger training sets, before moving on to our pri-
mary autonomous ultrasound scanning experiments, and the
description of a Bayesian optimisation strategy for informa-
tive path-planning that facilitates this.

In general, we envisage PTR being used as in Fig. 3. First,
a series of observations are collected while a human demon-
strates an exploratory visual scanning task. PTR is then used
to train a reward model by sampling pairwise temporal com-
parison outcomes from the demonstration sequences and
performing model fitting. This reward model is then used
by a suitable informative path-planning or active viewpoint
selection policy (in this case Bayesian optimisation) to repli-
cate the demonstration in new environments.

3.1 Fully probabilistic model

This paper incorporates additional assumptions around the
structure of demonstration sequences, to allow for improved
reward inference. We introduce a reward model that learns
from pairwise comparisons sampled from demonstration tra-
jectories. Here we assume that an observation or state seen
later in a demonstration trajectory should typically generate
greater reward than one seen at an earlier stage.

We build on the pairwise image ranking model of Burke
et al. (2017), replacing pre-trained object recognition image
features with a latent state, xt ∈ Rd , learned using a convo-
lutional variational autoencoder (CVAE),

xt ∼ N (μ(Zt ), σ (Zt )), (2)

that predicts mean, μ(Zt ) ∈ R
d , and diagonal covariance,

σ(Zt ) ∈ R
d×d , for input observation Zt ∈ R

w×h captured
at time t (assuming image inputs of dimension w × h).

Rewards rt ∈ R
1 are modelled using a Gaussian process

prior,

[
r ′
rt

]
∼ N

(
0,

[
K (X′,X′) + �n K (X′, xt )

K (xt ,X′) K (xt , xt )

])
. (3)

Here, we use X′ and r ′ to denote states and reward pairs
corresponding to training observations. X′ ∈ R

N×d is a
matrix formed by vertically stacking N latent training states,
and K (X′,X′) a covariance matrix formed by evaluating a
Matern32 kernel function

k(xt , yt ) = Matern32(xt , yt , l), xt , yt ∈ R
d (4)

for all possible combinations of latent state pairs xt , yt , sam-
pled from the rows of X′. l ∈ R

1 is a length scale parameter
with a Gamma distributed prior, l ∼ �(α = 2.0, β = 0.5),
and �n ∈ R

N×N is a diagonal heteroscedastic noise covari-
ance matrix, with diagonal elements drawn from a Half
Cauchy prior, �n ∼ HalfCauchy(β = 1.0).

These priors are well calibrated to the inference task here,
and should not need to be adjusted in other applications. A
half Cauchy prior (β = 1) is a heavy tailed distribution that
allows for diagonal covariance parameters (see Appendix,
Fig. 14), favouring low noise rewards, but also allowing for
higher noise if needed. Inference with this prior is thus capa-
ble of handling both noisy and more repeatable rewards.
Decreasing beta would increase the prior probability of little
variability in rewards for a given state.

Similarly, the Gamma distributed length scale prior places
most probability mass over a length scale of about 1, but
allows a range of values (see Appendix, Fig. 14). Given the
standard normal prior used by the variational autoencoder,
which compresses observations into a state space roughly
constrained within the range (− 3, 3), this prior allows for
both small local influence between latent states and rewards,
or wider correspondences across the latent space if needed.

At prediction time, reward predictions rt for image obser-
vations Zt can be made by encoding the image to produce
latent state xt , and conditioning the Gaussian in Equation (3)
(Williams & Rasmussen, 2006).

Using this model, the generative process for a pairwise
comparison outcome, g ∈ {0, 1}, between two input obser-
vation rewards rt1 and rt2 at time steps t1 and t2, is modelled
using a Bernoulli trial over the sigmoid of the difference
between the rewards,

g ∼ Ber
(
Sig(rt2 − rt1)

)
. (5)
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Demonstration

Image observation sequences

PTR

Reward inference

Temporal comparisons

Active-viewpoint selection

Bayesian optimisation

Fig. 3 Pipeline for autonomous ultrasound scanning. User demonstra-
tions are used to collect image sequences, temporal comparisons are
then sampled from these sequences and used by PTR to train a reward

inference model, which is then used by a Bayesian optimisation policy
for active-viewpoint selection in new environments

t1 t2 t3 t4
Increasing reward

Fig. 4 Time is used as a supervisory signal, by sampling image pairs
at times ti , t j , and setting g = 1 if ti > t j , g = 0 otherwise

This Bernoulli trial introduces slack in the model, allow-
ing for tied or even decreasing rewards to be present in the
demonstration sequence.

The Sigmoid used here produces a logit and allows for
simple differentiation, which is helpful for approximate
inference schemes and the neural approximation introduced
below, avoiding the need for the Laplace approximation to
the posterior used in Tucker et al. (2020); Biyik et al. (2020).

3.2 Reward inference using temporal observation
ranking

The generativemodel above is fit to demonstration sequences
using automatic differentiation variational inference (ADVI)
(Kucukelbir et al., 2017) by sampling N observation pairs
Zt1 ,Zt2 from each demonstration sequence, which produce
a comparison outcome

g =
{
1 if t2 ≥ t1
0 if t1 < t2

. (6)

Intuitively, this temporal comparison test, which uses time
as a supervisory signal (Fig. 4), operates as follows. Assume

that an image captured at time step t2 has greater reward than
an image captured at t1. This means that the sigmoid of the
difference between the rewards is likely to be greater than 0.5,
which leads to a higher probability of returning a comparison
outcome g = 1. Importantly, this Bernoulli trial allows some
slack in themodel –when the difference between the rewards
is closer to 0.5, there is a greater chance that a comparison
outcome of g = 1 is generated by accident. This means
that the proposed rankingmodel can deal with demonstration
trajectories where the reward is non-monotonic. Additional
slack in the model is obtained through the heteroscedastic
noisemodel,�n , which also allows for uncertainty in inferred
rewards to be modelled.

Inference under this model amounts to using the sampled
comparison outcomes from a demonstration trajectory to find
rewards that generate similar comparison outcomes, subject
to the Gaussian process constraint that images with similar
appearance should exhibit similar rewards. After inference,
we make reward predictions by encoding an input image,
and evaluating the conditional Gaussian process at this latent
state.

Webriefly illustrate the value of this probabilistic temporal
ranking approach in exploratory tasks using two simple grid
world experiments.

3.3 Grid world–optimal demonstrations

The first experiment considers a simple grid world, where
a Gaussian point attractor is positioned at some unknown
location. Our goal is to learn a reward model that allows an
agent (capable of moving up, down, left and right) to move
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Fig. 5 Reward inference from optimal demonstrations. Demonstration
trajectories are marked in red, and the colour map indicates the reward
for each grid position. PTR andMEmodels have similar relative reward
values, andpolicies trainedusing these rewards performnear identically.
A linearly increasing rewardmodel (LTR) attributes rewardmore evenly
across a demonstration, resulting in sub-optimal policy performance
here (Color figure online)

towards the target location. For these experiments, our state
is the agent’s 2D grid location.

We generate 5 demonstrations (grid positions) from ran-
dom starting points, across 100 randomised environment
configurations with different goal points. We then evaluate
performance over 100 trials in each configuration, using a
policy obtained through tabular value iteration (VI) using
the reward model inferred from the 5 demonstrations. This
policy is optimal, as the target location is known, so for all
demonstrations the agent moves directly towards the goal, as
illustrated for the sample environment configuration depicted
in Fig. 5.

Table 1 shows the averaged total returns obtained for
trials in environments when rewards are inferred from opti-
mal demonstrations using the probabilistic temporal ranking2

(GP-PTR), a Gaussian process maximum entropy approach
(Levine et al., 2011) (GP-ME-IRL) and an increasing linear
model assumption (Angelov et al., 2020) (GP-LTR). Value
iteration is used to find a policy using the mean inferred
rewards.

In the optimal demonstration case, policies obtained using
both the maximum entropy and probabilistic temporal rank-
ing approach perform equally well, although PTR assigns
more neutral rewards to unseen states (Fig. 5). Importantly,

2 WeusePyMC3 (Salvatier et al., 2016) (GP-PTR) to build probabilistic
reward models and ADVI (Kucukelbir et al., 2017) for model fitting.

Table 1 Averaged total returns
using VI policy trained using
inferred reward from optimal
demonstrations

Reward

GP-PTR 9.51 ± 4.92

GP-ME-IRL 9.58 ± 4.90

GP-LTR 7.39 ± 5.72

Fig. 6 Reward inference from exploratory demonstrations. Demon-
stration trajectories are marked in red, and the colour map indicates the
reward for each grid position.Both the linearly increasing andmaximum
entropy reward models induce local maxima that result in sub-optimal
policies (Color figure online)

as the proposed model is probabilistic, the uncertainty in
predicted reward can be used to restrict a policy to regions
of greater certainty by performing value iteration using an
appropriate acquisition function instead of the mean reward.
This implicitly allows for risk-based policies – by weight-
ing uncertainty higher, we could negate the neutrality of the
ranking model (risk-averse). Alternatively, we could tune the
weighting to actively seek out uncertain regions with per-
ceived high reward (risk-seeking).

3.4 Grid world–exploratory demonstrations

Our second experiment uses demonstrations that are pro-
vided by an agent that first needs to explore the environment,
before exploiting it. Here, we use a Gaussian process model
predictive control policy (see below) to generate demonstra-
tions, and repeat the experiments above. As shown in Fig. 6,
this policy may need to cover a substantial portion of the
environment before locating the target.

Table 2 shows the averaged total returns obtained for trials
in environments when rewards are inferred from exploratory
demonstrations using probabilistic temporal ranking, the
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Table 2 Averaged total returns
using VI policy trained using
inferred reward from
exploratory demonstrations

Reward

GP-PTR 7.42 ± 4.82

GP-ME-IRL 3.31 ± 4.24

GP-LTR 2.77 ± 4.30

T-REX 0.42 ± 1.59

D-REX 0.49 ± 2.10

Gaussian process maximum entropy approach and the lin-
early increasing reward assumption. Here, value iteration
(VI) is used to find the optimal policy using the inferred
rewards. A comparison with T-REX (Brown et al., 2019)
and D-REX (Brown et al., 2020), trajectory ranking meth-
ods designed to learn reward functions from sub-optimal
demonstrations are also included. It should be noted that T-
REX is a supervised learning method, relying on additional
labelling information about the quality of a demonstration,
while PTR requires no information beyond the demonstra-
tion sequences. For these experiments, we generate labelling
information for T-REX by using trajectory length as a rough
heuristic for the quality of a demonstration.D-REXgenerates
ranked trajectories by artificially injecting noise to demon-
strations.

In this sub-optimal exploratory demonstration case, poli-
cies obtained using themaximumentropy approach regularly
fail, while the probabilistic temporal ranking continues to
perform relatively well. Figure 6 shows a sample envi-
ronment used for testing. The sub-optimal behaviour of the
exploring model predictive control policies used for demon-
stration can result in frequent visits to undesirable states,
which leads to incorrect reward attribution under amaximum
entropy model. Probabilistic temporal ranking avoids this by
using the looser assumption that states generally improve
over time. T-REX performs extremely poorly here, as it is
unable to learn from the limited number of demonstrations
provided. D-REX also fails here, as it is unable to separate
the uninformative exploratory portions of the demonstrat-
ing from the final exploitative portion of the demonstration
policy. While D-REX works well for demonstrations that
are sub-optimal due to noise, in this case of exploratory goal
oriented tasks, the assumptionsmade by PTR aremore appli-
cable.

Figure 7 shows the performance of PTR as trajecto-
ries become more exploratory. Here, 100 demonstrations
were generated for a single environment and sorted by
length. Reward models were then learned using subsets of
10 demonstrations of increasing length. Policies were trained
to maximise these reward functions using value iteration.
GP-ME-IRL rapidly degrades as trajectories become more
exploratory. T-REX performs poorly here, as it needs both
good and bad examples to learn a reward function. D-REX

Fig. 7 Policy returns using rewards learned with trajectories of increas-
ing length show the degradation of GP-ME-IRL as trajectories become
more exploratory. T-REX performs poorly here, as it needs both good
and bad examples to learn a reward function. PTR performs well for
both optimal and exploratory demonstrations

Fig. 8 Policy returns using rewards learned with increasing numbers
of demonstration trajectories of increasing length. T-REX starts to per-
form better with more demonstration data, while GP-ME-IRL is highly
dependent on the quality of demonstrations. PTR performs well even
with a limited number of demonstration sequences

is unable to handle the exploratory trajectories. In contrast,
PTR performs well for both optimal and exploratory demon-
strations in these goal-oriented environments, failing only
when demonstrations never reach the goal.

Figure 8 shows the rewards obtained by policies trained
using rewards learned with increasing numbers of demon-
strations. T-REX performs substantially better with more
demonstration data and a good balance of optimal and
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exploratory trajectories, but struggles to learn from limited
data. GP-ME-IRL and D-REX, which make similar assump-
tions about the reward, are highly dependent on the quality of
demonstrations and thus extremely unreliable in this setting.
In contrast, PTR performs well even with a limited number
of demonstration sequences.

3.5 A deterministic neural approximation to PTR

Given that learning from demonstration typically aims to
require only a few trials, numerical inference under the fully
Bayesian generative model described above is tractable, par-
ticularly if a sparse Gaussian process prior is used. However,
in the case where a greater number of demonstrations or
comparisons is available, we can approximate the fully prob-
abilistic PTR model above with a deterministic model that
can be trained in an end-to-end fashion, using the architec-
ture in Fig. 9. Here, we replace the Gaussian process with a
wide single layer fully connected network (FCN), rψ(x),with
parameters ψ , since single layer FCN’s with i.i.d Gaussian
weights are known to approximate a sample from a Gaus-
sian processes (Neal, 1996) as model width tends to infinity.
This approximation is trained by minimising a binary cross
entropy loss over the expected comparison outcome along-
side a variational autoencoder (VAE) objective,

LL = −Ext1∼qθ

[
logpφ(Zt1 |x)

] + KL
(
qθ (x|Zt1)||p(x)

)

−Ext2∼qθ

[
logpφ(Zt2 |x)

] + KL
(
qθ (x|Zt2)||p(x)

)

− 1

N

N∑

i=1

[
gi log (h(gi )) + (1 − gi )log (1 − h(gi ))

]

(7)

using stochastic gradient descent. Here,LL denotes the over-
all loss, p(x) is a standard normal prior over the latent space,
qθ (x|Zti ) denotes the variational encoder, with parameters θ ,
pφ(Zti |x) represents the variational decoder, with parameters
φ, and h(g) is the comparison output logit (sigmoid). gi is a
temporal comparison outcome label, and Zti denotes a train-
ing sample image, with xt a sample from the latent space.
Weight sharing is used for both the convolutional VAEs and
FCNs.

Once trained, the reward model is provided by encod-
ing the input observation, and then predicting the reward
using the FCN. This allows for rapid end-to-end training
using larger datasets and gives us the ability to backpropagate
the comparison supervisory signal through the autoencoder,
potentially allowing for improved feature extraction in sup-
port of rewardmodelling. However, this comes at the expense
of uncertainty quantification, which is potentially useful
for the design of risk-averse policies that need to avoid
regions of uncertainty. We investigate these trade-offs and

Fig. 9 Neural PTR approximation. Sampled images are auto-encoded,
and a reward network predicts corresponding rewards, the sigmoid of the
difference between these reward produces a comparison outcome prob-
ability. Weight sharing is indicated by colour. The network is trained
jointly using a joint variational autoencoder and binary cross entropy
loss (Color figure online)

the efficacy of the approximate model in more general rein-
forcement learning environments below, and in the context
of autonomous ultrasound scanning in Sect. 4.

3.6 General reinforcement learning environments

It should be noted that while reward inference using proba-
bilistic temporal ranking is capable of handling sub-optimal
exploratory demonstrations in goal-oriented environments,
this assumption does not hold for more general tasks. To
illustrate this, we applied the deterministic neural PTR
approximation above (ML-PTR) to a range of low dimen-
sional continuous control environments3 (Brockman et al.,
2016). Here, we collect 100 demonstrations from an agent
trained using proximal policy optimisation (PPO) (Schul-
man et al., 2017), and infer rewards using ML-PTR. We then
use the inferred reward function to train a PPO agent. We
benchmark against AIRL (Fu et al., 2018) and GAIL (Ho
& Ermon, 2016), popular imitation learning approaches for
lower dimensional control tasks. We use the imitation tool-
box (Gleave et al., 2022) and Stable Baselines3 (Raffin et al.,
2021) for these experiments.

As shown in Table 3, the policy trained using theML-PTR
reward performs best on goal oriented tasks (learning to bal-
ance Pendulum-v1 and swing upAcrobot-v1), but fails on the
continuous control tasks (Ant-v3, Hopper-v3, HalfCheetah-
v3), where the assumption of generally increasing reward
over a demonstration does not hold.

3 No autoencoder is used, as the regularisation provided is unnecessary
for these low dimensional control problems.
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Table 3 Returns after training
for 500000 environment steps.
100 demonstrations are used for
reward learning or imitation
learning, and the best result
across 3 seeds reported (100 test
episodes). As expected, PTR
performs well on goal-oriented
tasks, but fails elsewhere

Pendulum-v1 Hopper-v3 HalfCheetah-v3
Method Reward (Mean ± Std) Reward (Mean ± Std) Reward (Mean ± Std)

Expert (PPO) −150.4354 ± 88.1962 3437.0038 ± 8.1665 1193.6989 ± 62.7869

ML-PTR (PPO) −189.2376 ± 112.5798 183.4452 ± 1.8466 130.8885 ± 46.1780

GAIL −315.1454 ± 193.8659 3415.7294 ± 1.9907 1220.1896 ± 92.7100

AIRL −948.4833 ± 107.4486 5.7232 ± 0.030 1000.2273 ± 63.5880

Acrobot-v1 Ant-v3
Method Reward (Mean ± Std) Reward (Mean ± Std)

Expert (PPO) −73.8100 ± 10.0297 800.8259 ± 85.1205

ML-PTR (PPO) −81.5600 ± 21.4487 −1558.8640 ± 2.1768

GAIL −292.8000 ± 161.7387 886.3507 ± 25.8765

AIRL −77.8600 ± 19.3111 −15.4500 ± 21.4068

Best performing approach is given in bold

4 Autonomous ultrasound scanning

For our primary experiment, we demonstrate the use of prob-
abilistic temporal ranking in a challenging ultrasound scan-
ning application. Here, we capture 10 kinesthetic demon-
strations of a search for a target object using a compliant
manipulator, and use only ultrasound image sequences (2D
trapezoidal cross-sectional scans) to learn a reward model.
Our goal is to use this reward model within a control policy
that automatically searches for and captures the best image
of a tumour-like mass4 suspended within a deformable imag-
ing phantomconstructed using a soft plastic casing filledwith
ultrasound gel.

This task is difficult because it involves a highly uncertain
and dynamic domain. Obtaining stable ultrasound images
requires contact with a deformable imaging phantom at an
appropriate position and contact force, with image quality
affected by the thickness of the ultrasound gel between the
phantom and the probe, while air pockets within the phan-
tom object can obscure object detection. Moreover, since the
phantom deforms, air pockets and gel can move in response
to manipulator contact. This means that kinesthetic demon-
strations are inherently sub-optimal and exploratory, as they
require that a demonstrator actively search for target objects,
while attempting to locate a good viewpoint position and
appropriate contact force. As in real-world medical imaging
scenarios, the demonstrator is unable to see through the phan-
tom object from above, so demonstrations are based entirely
on visual feedback from an ultrasound monitor.

4 A roughly 30mm x 20mm blob of Blu tack original in a container of
dimensions 200mm x 150mm x 150mm.

4.1 Active viewpoint selection

Although the proposed reward model can be used with any
policy, we demonstrate its use by means of a Bayesian opti-
misation policy, selecting action ât that drives an agent to a
desired end-effector position ŝt , drawn from a set of possible
states (a volume of acceptable end-effector positions) using
an upper confidence bound objective function that seeks to
trade off expected reward returns against information gain or
uncertainty reduction.

Here, we learn a mapping between reward and end-
effector positions using a surrogate Gaussian process model
with a radial basis function kernel,

rt ≈ GP (
0,RBF(st , l p)

)
. (8)

Length scale l p is determined by maximum likelihood esti-
mation, using a search within the length scale bounds l p ∈
[1e−5, 0.01]m. Fixed measurement noise, α = 0.5, is used
when fitting the Gaussian process to account for the variabil-
ity in reward that may be obtained in a given end-effector
position, resulting from the variability introduced by contact
with the deformable phantom, potential tumour motion and
ultrasound gel spreading effects.

The Gaussian process is iteratively trained using a buffer
of visited states (in our experiments these are 3D Cartesian
end-effector positions) and the corresponding rewards pre-
dicted using the image-based rewardmodel. Actions are then
chosen to move to a desired state selected using the objective
function,

ŝt = argmaxst μ(st )+βσ(st ). (9)

here μ(st ), σ(st ) are the mean and standard deviation of the
Gaussian process, and β = 1 is a hyperparameter control-
ling the exploration exploitation trade-off of the policy. This

123



Autonomous Robots (2023) 47:733–751 743

objective function is chosen in order to balance the compet-
ing objectives of visiting states that are known to maximise
reward with gaining information about values of states for
which themodel ismore uncertain. In our ultrasound imaging
application, actions are linear motions to a desired Cartesian
state.

Since theGPstartswith noprior information about reward,
and is re-fit online after each position is visited, the Bayesian
optimisation policy naturally transitions from exploration
and becomes more exploitative as additional information is
gained. Note that, for the ultrasound case, no policy is ever
‘trained’, instead we optimise the learned reward function
online for each new environment using the fixed Bayesian
optimisation strategy.

It should also be noted that any policy can be used
to optimise rewards predicted using probabilistic temporal
ranking. We selected a Bayesian optimisation strategy for
online experiments due to its prevalence in active viewpoint
selection literature, and because of its ability to deal with
uncertainty in state rewards arising the dynamic structure of
the deformable imaging phantom.

4.2 Reward inference evaluation

Figure 1 shows predicted reward sequences for sample expert
demonstration traces held out from model training. It is
clear that the ranking reward model captures the general
improvements in imagequality that occur as the demonstrator
searches for a good scanning view, and that some searching
is required before a good viewpoint is found. Importantly,
the slack in the pairwise ranking model, combined with
the model assumption that similar images result in similar
rewards, allows for these peaks and dips in reward to be
modelled, as probabilistic temporal ranking does not assume
monotonically increasing rewards.

We qualitatively assessed the image regions and fea-
tures identified using the reward model using saliency maps
(Fig. 1d), which indicated that the proposed approach has
learned to associate the target object with reward.

In order to quantitatively evaluate the performance of
probabilistic temporal ranking for autonomous ultrasound
imaging, approximately 5000 ultrasound images from a set
of 10 demonstration sequences were ordered in terms of
human preference by collecting 5000 human image compari-
son annotations and applying the ranking model of (Burke et
al., 2017). We evaluate reward inference models in terms
of how well they agree with this human labelling using
Kendall’s τ , a measure of the ordinal association between
observation sets, and Spearman’s ρ, a measure of rank cor-
relation. Figure10 shows these results.

We benchmark probabilistic temporal ranking (PTR)
against a maximum entropy reward model with both a Gaus-
sian process prior (GP-ME-VAE*) (Levine et al., 2011) and

a neural network prior (Deep-ME-VAE*) (Wulfmeier et al.,
2015), a monotonically increasing linear temporal ranking
model (LTR) (Angelov et al., 2020), T-REX-VAE* (Brown et
al., 2019) and a servoing reward model (Servo-VAE*) based
on the cosine similarity of a latent image embedding to a final
image captured.As in the gridworld experiments,we provide
T-REXwith labelling information using trajectory length as a
heuristic for demonstration quality.We also include a number
of ablation results for probabilistic temporal ranking models.
Model parameters are provided in the appendices.

Here, VAE* denotes the use of pre-trained image embed-
ding learned independently using variational autoecoding,
ML-PTR refers to amodel trainedwithout decoding the latent
embedding (no autoencoder loss), ML-PTR-VAE refers to a
maximum likelihood model trained jointly with both a vari-
ational autoencoding and pairwise ranking objective, and
GP-PTR-VAE* denotes the use of the probabilistic temporal
ranking with a pre-trained image embedding. It should be
noted that all reward models were inferred without policy
search, by directly optimising the reward objective.

It is clear that PTR outperforms baseline approaches.
The maximum entropy reward models fail to learn adequate
reward models. Servoing proved somewhat effective, but is
unlikely to scale to more general problems and use cases.
PTR improves upon LTR, illustrating the importance of
allowing for non-monotonically increasing rewards. T-REX
performs much better than maximum entropy approaches,
but does not recover the underlying reward function. This
is most likely due to the limited number of demonstrations
available, but also potentially due to the fact that trajectory
length is not always indicative of scan quality in this setting.
In some demos, a set of very good quality images could be
obtained after extensive exploration, while in others, a pass-
able set of scans may have been obtained after relatively little
searching. As a result, there is no clear or objective measure
of the quality of a scanning sequence suitable for use with
supervised learning approaches like T-REX.

The ablation results show that variational autoencoding
produces better reward models. This is most likely due to
its regularising effect, which helps to avoid over-fitting to
insignificant image appearance differences.Directly optimis-
ing without this regularising effect (ML-PTR) essentially
results in a monotonically increasing reward model, and
produces similar results to LTR. Interestingly, learning an
independent auto-encoding and using a single layer bottle-
neck reward network or Gaussian process, proved to be an
extremely effective strategy.

We believe that maximum entropy reward inference fails
for two primary reasons. First, probabilistic temporal rank-
ing produces substantially more training data, as each pair
of images sampled (50 000 pairs) from a demonstration pro-
vides a supervisory signal. In contrast, the maximum entropy
approach treats an entire trajectory as a single data point (10
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Fig. 10 Reward model association with human image ratings shows
that temporal ranking (green) reward inference models strongly agree
with human preferences. A Spearman rank correlation of ρ = 1 indi-
cates an identical rank or ordering,whileρ = −1 indicates a completing

opposing order. Similarly, Kendall’s τ = 1 indicates that the relative
rank assigned to images is identical to that assigned by the human anno-
tator, while τ = −1 would indicate opposing ranks

trajectories), and thus needs to learn from far fewer samples,
which is made even more challenging by the high dimen-
sional image inputs. Secondly, the maximum entropy reward
assumes that frequently occurring features are a sign of a
good policy, which means that it can mistakenly associate
undesirable frames seen during the scan’s searching process
for frames of high reward.

5 Policy evaluation

For policy evaluation, we compare probabilistic temporal
ranking with a Gaussian process maximum entropy inverse
reinforcement learning approach. For both models we use
the same latent feature vector (extracted using a stand-alone
variational autoencoder following the architecture in Fig. 9),
and the same Bayesian optimisation policy to ensure a fair
comparison.

We compare the two approaches by evaluating the final
image captured during scanning, and investigating the reward
traces associated with each model.

Trials were repeated 15 times for each approach, alternat-
ing between each, and ultrasound gel was replaced after 10
trials. Each trial ran for approximately 5min, andwas stopped
when the robot pose had converged to a stable point, or after
350 frames had been observed. A high quality ultrasound
scan is one in which the contours of the target object stand
out as high intensity, where the object is centrally located in
a scan, and imaged clearly enough to give some idea of the
target object size (see Fig. 2).

As shown in Fig. 11, the probabilistic temporal ranking
model consistently finds the target object in the phantom, and

also finds better rated images. Mean and standard deviations
in image ratings were obtained using the rating model (see
above) trained for reward evaluationusinghuman imagepref-
erence comparisons. The maximum entropy approach fails
more frequently than the ranking approach, and when detec-
tion is successful, tends to find off-centre viewpoints, and
only images small portions of the target object.

It is particularly interesting to compare the reward traces
for the probabilistic temporal rankingmodel to thoseobtained
using maximum entropy IRL when the Bayesian optimi-
sation scanning policy is applied. Figure12 overlays the
reward traces obtained for each trial. The maximum entropy
reward is extremely noisy throughout trials, indicating that
it has failed to adequately associate image features with
reward. Similar images fail to consistently return similar
rewards, so the Bayesian optimisation policy struggles to
converge to an imaging position with a stable reward score.
In contrast, the reward trace associated with the probabilistic
temporal ranking contains an exploration phase where the
reward varies substantially as the robot explores potential
viewpoints, followed by a clear exploitation phase where an
optimal viewpoint is selected and a stable reward is returned.

Figure 13 shows the predicted reward over the search
volume (a 50mm× 50mm× 30mm region above the imag-
ining phantom) for a PTR trial, determined as part of the
Bayesian optimisation search for images with high reward,
from reward and position samples (see Fig. 12). Here, we
capture images at 3D end-effector locations according to the
Bayesian optimisation policy, and predict the reward over the
space of possible end-effector states using (8). Importantly,
the Gaussian process proxy function is able to identify an
ultrasound positioning region associated with high reward.
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(a) Probabilistic temporal ranking reward (Average human image rating: 0.254± 0.079)

(b) Maximum entropy reward (Average human image rating: 0.119± 0.198)

Fig. 11 Final images obtained after policy convergence clearly show
that images obtained using probabilistic temporal ranking are much
clearer and capture the target object far more frequently than the max-
imum entropy reward. Target objects are circled, failures marked with

a cross. (Images are best viewed electronically, with zooming. See
anonymous companion site, https://sites.google.com/view/ultrasound-
scanner, for higher resolution images.)
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Fig. 12 Reward traces (top) show that the probabilistic temporal rank-
ing reward is stable enough for the BO robot policy to explore the
volume of interest (varying reward) before exploiting (stable reward).
The maximum entropy reward is extremely noisy, indicating that it
has failed to consistently associate high quality ultrasound image fea-
tures with reward. This can also be observed when the 3D positions

selected by the Bayesian optimisation policy are visualised (bottom),
and coloured by the reward associated with the ultrasound images
obtained when visiting these locations. The PTR policy first explores
the allowable search region, before converging to an optimal viewing
position (the cluster of high reward points).Apolicy using themaximum
entropy reward model fails to locate the target object

Fig. 13 A visualisation of the reward map (b) inferred by the Bayesian
optimisation Gaussian process during scanning shows that it attributes
high rewards (green) when the probe is pressed against the container
directly above the target. The scan volume, or the support of the reward
map, is illustrated using a green wireframe in the setup (a)

This corresponds to a position above the target object, where
the contact force with the phantom is firm enough to press
through air pockets, but light enough to maintain a thin, air-
tight layer of gel between the probe and phantom.

6 Conclusion

This work introduced probabilistic temporal ranking, an
approach to reward inference from exploratory demonstra-

tions for visual servoing or active viewpoint selection tasks.
Here, we take advantage of the fact that exploratory demon-
strations, whether optimal or sub-optimal, often involve steps
taken to improve upon an existing state. Results show that
leveraging this to infer reward through a ranking model is
more effective than common IRL methods in exploratory
cases where demonstrations require a period of discovery in
addition to reward exploitation and when observation traces
are high dimensional.

This paper also shows how the proposed reward infer-
encemodel can be used for a challenging ultrasound imaging
application. Here, we learn to identify image features asso-
ciated with target objects using kinesthetic scanning demon-
strations that are exploratory, as they inevitably require a
search for an object and position or contact force that returns
a good image. Using this within a policy that automatically
searches for positions5 and contact forces that maximise a
learned reward, allows us to automate ultrasound scanning.

5 For videos and higher resolution scan images, along with post pub-
lication links to code see https://sites.google.com/view/ultrasound-
scanner.
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When comparing with human scanning, a primary chal-
lengewe have yet to overcome is that of spreading ultrasound
gel smoothly over a surface. Human demonstrators implic-
itly spread ultrasound gel evenly over a target as part of the
scanning process so as to obtain a high quality image. The
Gaussian process policy used in thiswork is unable to accom-
plish this, whichmeans scans are still noisier than those taken
by human demonstrators. Moreover, human operators typi-
cally make use of scanning parameters like image contrast,
beam width and scanning depth, which we kept fixed for
these experiments. Nevertheless, the results presented here
show extensive promise for the development of targeted auto-
matic ultrasound imaging systems, and open up new avenues
towards semi-supervised medical diagnosis.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-023-10120-
w.
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Appendices

Hyper-parameter priors

See Fig. 14.

Fig. 14 Prior distributions used for PTR hyper-parameters

Table 4 Neural architecture parameters

Convolutional VAE

Batch size 128

Training epochs 100

Adam optimiser learning rate= 1e − 4

Input dims 112 × 112 × 1 ∈ (0, 1)

Encoder

Conv 32 5 × 5 kernel, relu, strides 2

Conv 64 5 × 5 kernel, relu, strides 2

Conv 128 5 × 5 kernel, relu, strides 2

Conv 256 5 × 5 kernel, relu, strides 2

Dense FC 1024 neurons, relu

Dense FC 16 × 2 output (mean, variance)

Decoder

Dense FC 1024 neurons, relu

Conv transpose 128 5 × 5 kernel, relu, strides 2

Conv transpose 64 5 × 5 kernel, relu, strides 2

Conv transpose 32 6 × 6 kernel, relu, strides 2

Conv transpose 1 6 × 6 kernel, relu, strides 2

Output dims 112 × 112 × 1 ∈ (0, 1)

Reward predictor

Dense FC relu, output dims 1

Network architectures

Table 4 shows the parameters and training settings used for
the convolutional neural architecture experiments.

Table 5 shows the parameters and training settings used
for the low-dimensional neural architecture experiments.

Learning to play atari breakout

Although this paper has primarily explored PTR in the con-
text of exploratory demonstrations, PTR is also of use in a
wide range of visual IRL tasks, particularly open ended ‘sur-
vival’ settings. In these more general cases, PTR rewards
image features corresponding to time spent in an environ-
ment, and becomes more akin to an intrinsic motivation
strategy (Barto, 2013).
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Table 5 Neural architecture parameters (OpenAI Gym Environments)

RewardNet

Batch size 64

Training epochs 1000

AdamW optimiser learning rate= 1e − 4

Encoder

RunningNorm

Dense FC 32 × 32, relu,

Dense FC 32 × 32, relu,

Reward predictor

Dense FC 32 × 1, relu

PTR Return: 0.02 PTR Return: 46.80 PTR Return: 323.94 PTR Return: 1087.67
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Fig. 15 Top: Game states associated with PTR rewards. Bottom:
Returns (cumulative reward) obtained for an A3C policy trained using
PTR. The blue axes and curve provides the increase in return as a func-
tion of frames seen during training, while the orange curve provides
the corresponding true reward obtained by the trained policy. Axes are
aligned by linearly scaling by the ratio of the maximum reward inferred
using PTR and the maximum true reward of an A3C policy used to
gather demonstrations

This is illustrated below using the Atari game Breakout,
where a PTR reward function is learned from 20 demonstra-
tions obtained by an agent trained using A3C6 (Mnih et al.,
2016). The PTR reward function was then used to train a sec-
ond agent using A3C, which, as illustrated in Fig. 15, learns
to play Breakout reasonably well.

6 https://github.com/greydanus/baby-a3c
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