

Edinburgh Research Explorer

DynoPlan: Combining Motion Planning and Deep Neural Network
based Controllers for Safe HRL

Citation for published version:
Angelov, D, Hristov, Y & Ramamoorthy, S 2019, DynoPlan: Combining Motion Planning and Deep Neural
Network based Controllers for Safe HRL. in Multi-disciplinary Conference on Reinforcement Learning and
Decision Making (RLDM) Proceedings. 4th Multi-disciplinary Conference on Reinforcement Learning and
Decision Making, Montreal, Canada, 7/07/19. <http://rldm.org/>

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Multi-disciplinary Conference on Reinforcement Learning and Decision Making (RLDM) Proceedings

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Jul. 2021

http://rldm.org/
https://www.research.ed.ac.uk/en/publications/8ed96d07-4552-4c69-bf04-fe27c5af6f65

ar
X

iv
:1

90
6.

10
09

9v
1

 [
cs

.R
O

]
 2

4
Ju

n
20

19

DynoPlan: Combining Motion Planning and Deep Neural
Network based Controllers for Safe HRL

Daniel Angelov
School of Informatics

University of Edinburgh
d.angelov@ed.ac.uk

Yordan Hristov
School of Informatics

University of Edinburgh
y.hristov@ed.ac.uk

Subramanian Ramamoorthy
School of Informatics

University of Edinburgh
s.ramamoorthy@ed.ac.uk

Abstract

Many realistic robotics tasks are best solved compositionally, through control architectures that sequentially invoke prim-
itives and achieve error correction through the use of loops and conditionals taking the system back to alternative earlier
states. Recent end-to-end approaches to task learning attempt to directly learn a single controller that solves an entire
task, but this has been difficult for complex control tasks that would have otherwise required a diversity of local primi-
tive moves, and the resulting solutions are also not easy to inspect for plan monitoring purposes. In this work, we aim to
bridge the gap between hand designed and learned controllers, by representing each as an option in a hybrid hierarchical
Reinforcement Learning framework - DynoPlan. We extend the options framework by adding a dynamics model and
the use of a nearness-to-goal heuristic, derived from demonstrations. This translates the optimization of a hierarchical
policy controller to a problem of planning with a model predictive controller. By unrolling the dynamics of each option
and assessing the expected value of each future state, we can create a simple switching controller for choosing the opti-
mal policy within a constrained time horizon similarly to hill climbing heuristic search. The individual dynamics model
allows each option to iterate and be activated independently of the specific underlying instantiation, thus allowing for a
mix of motion planning and deep neural network based primitives. We can assess the safety regions of the resulting hy-
brid controller by investigating the initiation sets of the different options, and also by reasoning about the completeness
and performance guarantees of the underpinning motion planners.

Keywords: hierarchical options learning; safe motion planning; dynamics
model

Acknowledgements

This research is supported by the Engineering and Physical Sciences Research Council (EPSRC), as part of the CDT
in Robotics and Autonomous Systems at Heriot-Watt University and The University of Edinburgh. Grant reference
EP/L016834/1., and by an Alan Turing Institute sponsored project on Safe AI for Surgical Assistance.

http://arxiv.org/abs/1906.10099v1

1 Introduction

Open world tasks often involve sequential plans. The individual steps in the sequence are usually quite independent
from each other, hence can be solved through a number of different methods, such as motion planning approaches for
reaching, grasping, picking and placing, or through the use of end-to-end neural network based controllers for a similar
variety of tasks. In many practical applications, we wish to combine such a diversity of controllers. This requires them
to share a common domain representation. For instance the problem of assembly can be represented as motion planning
a mechanical part in proximity to an assembly and subsequently the use of a variety of wiggle policies to fit together
the parts. Alternatively, an end-to-end policy can be warm-started by using samples from the motion planner, which
informs how to bring the two pieces together and the alignment sub-policy needed, as in [1]. The resulting policy is
robust in the sense that the task of bringing together the assembly can be achieved from a large set of initial conditions
and perturbations.

A hybrid hierarchical control strategy, in this sense, allows for different capabilities to be independently learned and
composed into a task solution with multiple sequential steps. We propose a method that allows for these individual
steps to consist of commonly used motion planning techniques as well as deep neural network based policies that are
represented very differently from their sampling based motion planning counterparts. We rely on these controllers
to have a dynamic model of the active part of their state space, and a sense of how close they are to completing the
overall task. This allows the options based controller to predict the future using any of the available methods and then
determine which one would bring the world state to one closest to achieving the desired solution - in the spirit of model
based planning.

(a) Gear Assembly (b) Option 4 of inserting a gear on a peg

Figure 1: The gear assembly problem executed by the robot. The execution of option 4, (Section.5) is shown on the right.

Modern Deep Reinforcement Learning (DRL) approaches focus on generating small policies that solve individual prob-
lems (pick up/grasp/push) [2], or longer range end to end solutions illustrated in modern games. Typically, in order to
provide a good initialization for the optimization algorithm, expert demonstrations are provided either through human
demonstration [3] or through the use of a motion planner as an initial approximation to the solution [1]. In problems
that allow for a simulator to be used as part of the inference and learning procedure, DNN & tree based approaches have
shown great promise in solving Chess, Go, Poker. To extend these methods to more general domains, a world dynamics
model is required to approximate the environment as in [4].

DynoPlan aims at extending the options framework in the following ways:

• We learn a dynamics model st+1 ∼ D(st, at) for each option that predicts the next state of the world given the
current action; and

• We learn a goal heuristic G(st) that gives a distribution as an estimate of how close the state is to completing the
task, based on the demonstrations.

This allows for the higher level controller to perform reasoning about sequentially applying controllers in overlapping
initiation sets for completing a task.

We aim to show that we can use off-the-shelf model-based controllers in parts of the state space, where their performance
is already optimized, and model-free methods for states without correspondingly robust or easily scripted solutions,
combining these two categories of controllers into a hybrid solution.

2 Related Work

Our method sits between learning policies over options as in [5]; and computing solutions using learning from demon-
stration such as through inverse reinforcement learning [6]. Reinforcement Learning is intrinsically based on the forward
search of good states through experience. The update of the quality of an action at a particular state is performed by the
iterative application of the Bellman equation. Performing updates in a model-free method must overcome the problems
of sparse reward and credit assignment. Introducing a learned model that summarizes the dynamics of the problem can
alleviate some scaling issues as in [4]. However, searching for a general world model remains hard and we are not aware

1

of methods that can achieve the desired performance levels in physical real world tasks. Such problems usually exhibit
a hierarchical sequential structure - e.g. the waking up routine is a sequence of actions, some of which are conditioned on
the previous state of the system.

The options framework provides a formal way to work with hierarchically structured sequences of decisions made by
a set of RL controllers. An option consists of a policy πω(at|st), an initiation set I and termination criteria βω(st) -
probability of terminating the option or reaching the terminal state for the option. A policy over options πΩ(ωt|st) is
available to select the next option when the previous one terminates as shown by [7, 8].

Temporal abstractions have been extensively researched by [9, 7]. The hierarchical structure helps to simplify the control,
allows an observer to disambiguate the state of the agent, and encapsulates a control policy and termination of the policy
within a subset of the state space of the problem. This split in the state space allows us to verify the individual controller
within the domain of operation - [10], deliberate the cost of an option and increase the interpretability - [11]. Our method
borrows this view of temporally abstracting trajectories and extends it by enforcing a dynamics model for each of the
options allowing out agent to incorporate hindsight in its actions.

To expedite the learning process, we can provide example solution trajectories by demonstrating solutions to the prob-
lem. This can be used to learn safe policies [12]. Alternatively, it can be used to calculate the relative value of each
state by Inverse Reinforcement Learning [6]. For instance, we can expect that agents would be approximately rational in
achieving their goal, allowing [13] to infer them. Exploring the space of options may force us to consider ones that are
unsafe for the agent. [14] rephrases the active inverse reinforcement learning to optimize the agents policy in a risk-aware
method. Our work partitions the space of operation of each option, allowing that area to inherit the safety constraints
that come associated with the corresponding policy.

3 Problem Definition

We assume there exists an already learned set of options O = {o1, o2, ..., oN} and a set of tasks K = {K1,K2, . . . ,KL}.
Each option oω is independently defined by a policy πω(s) → a, s ∈ Sω, a ∈ Aω, an initiation set Iω, Iω ⊆ Sω where
the policy can be started, and a termination criteria βω. We extend the options formulation by introducing a forward
dynamics model st+1 ∼ Dω(st), which is a stochastic mapping, and a goal metric g ∼ GKj

(st), 0 ≤ g ≤ 1, that estimates
the progress of the state st with respect to the desired world configuration. We aim for GKj

to change monotonically
through the demonstrated trajectories. The state space of different options S = {S1,S2, ..,SN} can be different, as long
as there exists a direct or learnable mapping between Si and Sj for some part of the space.

We aim to answer the question whether we can construct a hybrid hierarchical policy πΩ(ωt|st) that can plan the next
option oωt

that needs to be executed to bring the current state st to some desired sfinal by using the forward dynamics
model Dω in an n-step MPC look-ahead using a goal metric GK that evaluates how close st+n is to sfinal.

4 Method

At a particular point st when oω is active, we can compute how successful is following the policy given these conditions
up to a particular time horizon. The action given by the policy is at = πω(st), and following the dynamics model we can
write that st+1 = Dω(st, at) = Dω(st, πω(st)). As the dynamics model is conditioned on the policy, we can simplify the
notation to st+1 = Dω(st). Chaining it for n steps in the future we obtain st+n = Dω ◦Dω ◦ · · · ◦ Dω(st) = Dn

ω(st). Thus, a
policy over policies can sequentially optimize

πΩ(ωt|st) = argmax
ω

(E [1Iω
(st) · G ◦ Dn

ω(st)]) (1)

After choosing and evaluating the optimal πΩ with respect the above criterion, another controller can be selected until
the goal is reached.

5 Experimental Setup

We perform two sets of experiments to showcase the capability of using the structured hierarchical policy by performing
MPC future predictions at each step on a simulated MDP problem and on a gear assembly task on the PR2 robot.

Simulated MDP In the first we use the standard 19-state random walk task as defined in [15] and seen on Figure. 2(a).
The goal of the agent is to reach past the 19th state and obtain the +1 reward. The action space of the agent is to go “left”
or “right”. There also exist 5 options defined as in Section. 3, with the following policies: (1-3) policies that go “right”
with a different termination probabilities β = {0.9, 0.5, 0.2}; (4) random action; (5) policy with action to go “’left” with
β = 0.5. We assume that there exists a noisy dynamics model Dω and the goal evaluation model GMDP , obtained from
demonstrations, that have probability of mispredicting the current state or its value of 0.2.

Gear Assembly In this task the PR2 robot needs to assemble a part of the Siemens Challenge1, which involves grasping
a compound gear from a table, and placing it on a peg module held in the other hand of the robot. A human operator

1 The challenge can be seen https://new.siemens.com/us/en/company/fairs-events/robot-learning.html

2

can come in proximity to the robot, interfering with the policy plan. We have received expert demonstrations of the task
being performed, as well as access to a set of option that (1) picks the gear from the table; (2) quickly moves the left
PR2 arm in proximity to the other arm; (3) cautiously navigates the left PR2 arm to the other avoiding proximity with
humans; (4) inserts the gear on the peg module. Policy (2) relies exclusively on path planning techniques, (4) is fully
neural networks learned and (1, 3) are a mixture between a neural recognition module recognizing termination criteria
and motion planning for the policy. The options share a common state space of the robots’ joint angles. The initiation set
of all policies is R12. The terminal criteria β for o1,2 is inversely proportional to the closeness to a human to the robot; for
o2−4 is the proximity to a desired offset from the other robot hand.

The dynamics model for each option is independent and is represented either as part of the motion planner, or similarly
to the goal estimator - a neural networks working on the joint angle states of both arms of the robot.

In cases of options with overlapping initiation sets (i.e. options 1, 2, 3 all work within R12), we can softly partition the
space of expected operation by fitting a Gaussian Mixture Model FM on the trajectories of the demonstrations, where
s, s ∼ FM is a sample state from the trajectory. F is a set of M Gaussian Mixtures F = {Ni(µi,Σi)|i=1..M}, and Jk is a
subset of FM , where samples from Jk correspond to samples from trajectory of option k, 1 ≤ k ≤ N . We can thus assess
the likelihood of a particular option working in a state s ∼ πj by evaluating L(s|πj ,FM) = maxp [p(s|µi,Σi)]µi,Σi∈J (5),

This gives us the safety region, in which we expect the policy to work. By using the overlap between these regions, we
can move the state of the system in a way that reaches the desired demonstrated configuration.

6 Results

We aim to demonstrate the viability of using the options dynamics as a method for choosing a satisfactory policy. The
dynamics can be learned independently of the task, and can be used to solve a downstream task.

Simulated MDP The target solution shows the feasibility and compares the possible solutions by using different options.
In Figure. 2(b), we can see that we reach the optimal state in just 4 planning steps, where each planning step is a rollout
of an option. We can see the predicted state under the specified time horizon using different options. This naturally
suggests the use of the policy π1 that outperforms the alternatives (π1 reaches state 6, π2 - state 4, π2 - state 3, π3 - state
1, π4 - state 1, π5 - state 0). Even though the predicted state differs from the true rollout of the policy, it allows the
hierarchical controller to use the one, which would progress the state the furthest. The execution of some options (i.e.
option 5 in planning steps 1, 2, 3) reverts the state of the world to a less desirable one. By using the forward dynamics,
we can avoid sampling these undesirable options.

(a) MDP Problem (b) MDP Solution

Figure 2: (a) The 19-state MDP problem. The action space of the MDP is to move “left” or “right”. The goal of the
MDP problem is to reach past state 19 and obtain the +1 reward, which is equivalent to a termination state 20. (b) MDP
solution. At timestep 0, a rollout of the 5 options is performed with the dynamics model. The expected resulting state
is marked as blue vertical bars. The best performing option is used within the environment to obtain the next state - the
red line at state 5 and planning step 1. This process is iterated until a desired state is reached.

Gear Assembly We obtained 10 demonstrations of the task being performed. In Figure. 3(a), we show the performance
of the goal estimator network on an independent trial. We can observe that the state goal metric estimator closely tracks
the expected ground truth values along the trajectory. This provides reasonable feedback that can be used by πΩ to
choose an appropriate next policy.

Similarly, in Figure. 3(b) we show the t-SNE of the trials of the robot trajectories that have no interruptions and some in
which a human enters the scene and interferes with the motion of robot, forcing a change of policy to occur. We see that
there is natural split in the states in which different options have been activated. We can notice that the overlap of the
region of activation for the different policies allows the robot to grasp, navigate to, and insert the gear into the assembly
by following these basins of the policies initiation. By following Eq.5 we can therefore create state space envelope of
action of each option. The corresponding part of the state space, conditioned on the executed option, can have the safety
constraints enforced by the underlying control method for the option.

3

(a) Goal Heuristic (b) t-SNE visuazlization of the controllers states.

Figure 3: (a) The learned heuristics about how close the current state is to the demonstrated goal state. (b) t-SNE plot
of the controllers state during a set of trajectories. Magenta - o1 for grasping the object, Green - o2 and o3 for navigating
to the assembly with and without a human intervention and Blue - o4 for inserting the gear onto the peg. The shaded
regions illustrate the regions of control for the different policies.

7 Conclusion

We present DynoPlan - a hybrid hierarchical controller where by extending the options framework, we can rephrase the
learning of a top level controller to an MPC planning solution. By unrolling the future states of each option, where each
can be assessed on the contribution of furthering the agents intent based on the goal heuristic, we can choose the one best
satisfying the problem requirements. This method of action selection allows to combine motion planning with neural
network control policies in a single system, whilst retaining the completeness and performance guarantees of the work
space of the associated options.

References

[1] Garrett Thomas, Melissa Chien, Aviv Tamar, Juan Aparicio Ojea, and Pieter Abbeel. Learning robotic assembly from
cad. 2018 IEEE International Conference on Robotics and Automation (ICRA), May 2018.

[2] Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. Learnings options end-to-end for continuous
action tasks. arXiv preprint arXiv:1712.00004, 2017.

[3] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning from demon-
stration. Robotics and Autonomous Systems, 57(5):469 – 483, 2009.

[4] David Ha and Jurgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

[5] Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete event
dynamic systems, 13(1-2):41–77, 2003.

[6] Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, methods and progress.
arXiv preprint arXiv:1806.06877, 2018.

[7] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

[8] Doina Precup. Eligibility traces for off-policy policy evaluation. CS Department Faculty Publication Series, 2000.

[9] Glenn A Iba. A heuristic approach to the discovery of macro-operators. Machine Learning, 3(4):285–317, 1989.

[10] P. Rumschinski S. Streif R. Findeisen P. Andonov, A. Savchenko. Controller verification and parametrization subject
to quantitative and qualitative requirements. IFAC-PapersOnLine, 48(8):1174 – 1179, 2015.

[11] Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When waiting is not an option: Learning options
with a deliberation cost. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[12] Jessie Huang, Fa Wu, Doina Precup, and Yang Cai. Learning safe policies with expert guidance. arXiv preprint
arXiv:1805.08313, 2018.

[13] Chris L Baker, Rebecca Saxe, and Joshua B Tenenbaum. Action understanding as inverse planning. Cognition,
113(3):329–349, 2009.

[14] Daniel S Brown, Yuchen Cui, and Scott Niekum. Risk-aware active inverse reinforcement learning. arXiv preprint
arXiv:1901.02161, 2019.

[15] Anna Harutyunyan, Peter Vrancx, Pierre-Luc Bacon, Doina Precup, and Ann Nowe. Learning with options that
terminate off-policy. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

4

	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Method
	5 Experimental Setup
	6 Results
	7 Conclusion

