2,104 research outputs found
Four-Quark Hadrons: an Updated Review
The past decade witnessed a remarkable proliferation of exotic
charmonium-like resonances discovered at accelerators. In particular, the
recently observed charged states are clearly not interpretable as q-qbar
mesons. Notwithstanding the considerable advances on the experimental side,
conflicting theoretical descriptions do not seem to provide a definitive
picture about the nature of the so-called XYZ particles. We present here a
comprehensive review about this intriguing topic, discussing both those
experimental and theoretical aspects which we consider relevant to make further
progress in the field. At this state of progress, XYZ phenomenology speaks in
favour of the existence of compact four-quark particles (tetraquarks) and we
believe that realizing this instructs us in the quest for a firm theoretical
framework.Comment: 120 pages, 53 figures. Several typos corrected and some refs. added
in v
SWIPE: a bolometric polarimeter for the Large-Scale Polarization Explorer
The balloon-borne LSPE mission is optimized to measure the linear
polarization of the Cosmic Microwave Background at large angular scales. The
Short Wavelength Instrument for the Polarization Explorer (SWIPE) is composed
of 3 arrays of multi-mode bolometers cooled at 0.3K, with optical components
and filters cryogenically cooled below 4K to reduce the background on the
detectors. Polarimetry is achieved by means of large rotating half-wave plates
and wire-grid polarizers in front of the arrays. The polarization modulator is
the first component of the optical chain, reducing significantly the effect of
instrumental polarization. In SWIPE we trade angular resolution for
sensitivity. The diameter of the entrance pupil of the refractive telescope is
45 cm, while the field optics is optimized to collect tens of modes for each
detector, thus boosting the absorbed power. This approach results in a FWHM
resolution of 1.8, 1.5, 1.2 degrees at 95, 145, 245 GHz respectively. The
expected performance of the three channels is limited by photon noise,
resulting in a final sensitivity around 0.1-0.2 uK per beam, for a 13 days
survey covering 25% of the sky.Comment: In press. Copyright 2012 Society of Photo-Optical Instrumentation
Engineers. One print or electronic copy may be made for personal use only.
Systematic reproduction and distribution, duplication of any material in this
paper for a fee or for commercial purposes, or modification of the content of
the paper are prohibite
Recommended from our members
Stable isotope metabolomics of pulmonary artery smooth muscle and endothelial cells in pulmonary hypertension and with TGF-beta treatment.
Altered metabolism in pulmonary artery smooth muscle cells (PASMCs) and endothelial cells (PAECs) contributes to the pathology of pulmonary hypertension (PH), but changes in substrate uptake and how substrates are utilized have not been fully characterized. We hypothesized stable isotope metabolomics would identify increased glucose, glutamine and fatty acid uptake and utilization in human PASMCs and PAECs from PH versus control specimens, and that TGF-β treatment would phenocopy these metabolic changes. We used 13C-labeled glucose, glutamine or a long-chain fatty acid mixture added to cell culture media, and mass spectrometry-based metabolomics to detect and quantify 13C-labeled metabolites. We found PH PASMCs had increased glucose uptake and utilization by glycolysis and the pentose shunt, but no changes in glutamine or fatty acid uptake or utilization. Diseased PAECs had increased proximate glycolysis pathway intermediates, less pentose shunt flux, increased anaplerosis from glutamine, and decreased fatty acid β-oxidation. TGF-β treatment increased glycolysis in PASMCs, but did not recapitulate the PAEC disease phenotype. In TGF-β-treated PASMCs, glucose, glutamine and fatty acids all contributed carbons to the TCA cycle. In conclusion, PASMCs and PAECs collected from PH subjects have significant changes in metabolite uptake and utilization, partially recapitulated by TGF-β treatment
Investigation of the effects of vitamin D and calcium on intestinal motility: In vitro tests and implications for clinical treatment
The presence of vitamin D receptors in small intestine muscle cells may lead one to think that vitamin D may act locally, influencing intracellular calcium concentration and contributing to the contraction-relaxation regulation of the intestinal smooth muscle cells. This study investigates the potential effects of vitamin D and calcium on intestinal motility using an in vitro test.
Different calcium concentrations added to the tissue not pre-treated with 1,25-dihydroxycholecalciferol [1α,25(OH)2D3] produced no response at low doses (1.25×10–3 and 2.0×10–3 mol L–1) and only a very weak response at higher concentration (3.0×10–3 mol L–1). The addition of 1α,25(OH)2D3 (1.44×10–10 mol L–1) had no effect on isolated ileum motility. When calcium (3.0×10–3 mol L–1) was added after at least 3 hours, it evoked evident and persistent contractions for 60-90 minutes. The contractions were at about 40 % of the peak produced by acetylcholine.Thus, simultaneous intake of vitamin D and calcium might be a useful co-adjuvant in intestinal atony therapy aimed to stimulate normal gut motility in humans. These findings imply that supplemental vitamin D may be important in all cases where calcium has to be prescribed
The Large-Scale Polarization Explorer (LSPE)
The LSPE is a balloon-borne mission aimed at measuring the polarization of
the Cosmic Microwave Background (CMB) at large angular scales, and in
particular to constrain the curl component of CMB polarization (B-modes)
produced by tensor perturbations generated during cosmic inflation, in the very
early universe. Its primary target is to improve the limit on the ratio of
tensor to scalar perturbations amplitudes down to r = 0.03, at 99.7%
confidence. A second target is to produce wide maps of foreground polarization
generated in our Galaxy by synchrotron emission and interstellar dust emission.
These will be important to map Galactic magnetic fields and to study the
properties of ionized gas and of diffuse interstellar dust in our Galaxy. The
mission is optimized for large angular scales, with coarse angular resolution
(around 1.5 degrees FWHM), and wide sky coverage (25% of the sky). The payload
will fly in a circumpolar long duration balloon mission during the polar night.
Using the Earth as a giant solar shield, the instrument will spin in azimuth,
observing a large fraction of the northern sky. The payload will host two
instruments. An array of coherent polarimeters using cryogenic HEMT amplifiers
will survey the sky at 43 and 90 GHz. An array of bolometric polarimeters,
using large throughput multi-mode bolometers and rotating Half Wave Plates
(HWP), will survey the same sky region in three bands at 95, 145 and 245 GHz.
The wide frequency coverage will allow optimal control of the polarized
foregrounds, with comparable angular resolution at all frequencies.Comment: In press. Copyright 2012 Society of Photo-Optical Instrumentation
Engineers. One print or electronic copy may be made for personal use only.
Systematic reproduction and distribution, duplication of any material in this
paper for a fee or for commercial purposes, or modification of the content of
the paper are prohibite
Interleukin-9 Overexpression and Th9 Polarization Characterize the Inflamed Gut, the Synovial Tissue, and the Peripheral Blood of Patients With Psoriatic Arthritis
Objective. To investigate the expression and tis- sue distribution of Th9-related cytokines in patients with psoriatic arthritis (PsA).
Methods. Quantitative gene expression analysis of Th1, Th17, and Th9 cytokines was performed in intestinal biopsy samples obtained from patients with PsA, HLA2B272positive patients with ankylosing spondylitis (AS), patients with Crohn’s disease (CD), and healthy controls. Expression and tissue distribu- tion of interleukin-23 (IL-23), IL-17, IL-22, IL-9, and IL-9 receptor (IL-9R) were evaluated by immunohisto- chemistry and confocal microscopy. Flow cytometry was used to study the frequency of Th9 cells among periph- eral blood, lamina propria, and synovial fluid mononuclear cells. The functional relevance of IL-9R expression on epithelial cells was assessed in functional in vitro studies. Th9 cells in synovial tissue from patients with PsA were also studied.
Results. Subclinical gut inflammation in PsA patients was characterized by a clear Th17 and Th22, but not Th1, polarized immune response. Unlike AS and CD, a strong and significant up-regulation of IL-9 was observed in PsA gut, especially among infiltrating mononuclear cells, high endothelial venules, and Pan- eth cells. IL-92positive mononuclear cells were demon- strated to be in large part Th9 cells. IL-9 overexpression was accompanied by significant Paneth cell hyperplasia. Paneth cells strongly overexpressed IL-9R, and stimula- tion of epithelial cells, isolated from PsA patients, with IL-9 resulted in overexpression of a-defensin 5 and IL-23p19. Peripheral and synovial expansion of a4b71 Th9 cells was also observed in patients with PsA. Increased expression of IL-9 and IL-9R was also found in synovial tissue.
Conclusion. Strong IL-9/Th9 polarization seems to be the predominant immunologic signature in patients in PsA
Binary black hole merger in the extreme mass ratio limit
We discuss the transition from quasi-circular inspiral to plunge of a system
of two nonrotating black holes of masses and in the extreme mass
ratio limit . In the spirit of the Effective One Body
(EOB) approach to the general relativistic dynamics of binary systems, the
dynamics of the two black hole system is represented in terms of an effective
particle of mass moving in a (quasi-)Schwarzschild
background of mass and submitted to an
radiation reaction force defined by Pad\'e resumming high-order Post-Newtonian
results. We then complete this approach by numerically computing, \`a la
Regge-Wheeler-Zerilli, the gravitational radiation emitted by such a particle.
Several tests of the numerical procedure are presented. We focus on
gravitational waveforms and the related energy and angular momentum losses. We
view this work as a contribution to the matching between analytical and
numerical methods within an EOB-type framework.Comment: 14 pages, six figures. Revised version. To appear in the CQG special
issue based around New Frontiers in Numerical Relativity conference, Golm
(Germany), July 17-21 200
- …