298 research outputs found

    Notes on Recent Cases

    Get PDF
    Notes on recent cases by D. M. Donahue, A. J. DeDario, J. S. Angelino, J. J. Canty, F. Earl Lamboley, Marc Wonderlin, and Albion M. Griffin

    Notes on Recent Cases

    Get PDF
    Notes on recent cases by J. S. Angelino, Marc Wonderlin, W. S. McCray, John P. Berscheid, J. J. Canty, J. J. Lyons, R. C. Kuehl, D. M. Donahue, M. E. McGcogehgan, G. L. Housley, Thomas J. Jones, Jr., and F. Earl Lamboley

    Virtual reality and gamification in marketing higher education: A review and research agenda

    Get PDF
    Purpose – The purpose of this paper is to review studies on the use of virtual reality (VR) and gamification to engage students in higher education for marketing issues to identify the research topics, the research gaps and to prepare a future research agenda. Design/methodology/approach – A literature review is performed based on two search terms applied to Web of Science, resulting in a final pool of 115 articles. A text-mining approach is used to conduct a full-text analysis of papers related to VR and gamification in higher education. The authors also compare the salient characteristics presented in the articles. Findings – From this analysis, five major research topics are found and analysed, namely, teaching methodologies and education, experience and motivation, student engagement, applied theories in VR and gamification. Based on this and following the theory concept characteristics methodology framework, the paper provides directions for future research. Originality/value – There is no comprehensive review exploring the topics, theories, constructs and methods used in prior studies concerning VR and gamification applied to higher education services based on all the articles published in well-regarded academic journals. This review seeks to provide deeper insights, to help scholars contribute to the development of this research field.info:eu-repo/semantics/publishedVersio

    A comprehensive gyrokinetic description of global electrostatic microinstabilities in a tokamak

    Get PDF
    It is believed that low frequency microinstabilities such as ion temperature gradient (ITG) driven modes and trapped electron modes (TEMs) are largely responsible for the experimentally observed anomalous transport via the ion and electron channels in a tokamak. In the present work, a comprehensive global linear gyrokinetic model incorporating fully kinetic (trapped and passing) electrons and ions, actual ion to electron mass ratio, radial coupling, and profile variation is used to investigate the ITG driven modes and pure TEMs. These modes are found to exhibit multiscale structures in the presence of nonadiabatic passing electrons. The multiscale structure is related to the large nonadiabaticity of electrons in the vicinity of mode rational magnetic surfaces and leads to reduced mixing length estimates of transport compared to those obtained from adiabatic electron models

    Short wavelength ion temperature gradient mode and coupling with trapped electrons

    Get PDF
    The effect of trapped electrons on the ion temperature gradient ITG mode in a regime where its wavelength is shorter than the conventional ITG mode k Li 1 has been studied. Such a mode propagates in the ion diamagnetic direction with a typical scale length k Li 1 and is termed as the short wavelength ITG SWITG mode. The effect of the trapped electrons on this SWITG mode is investigated, for the first time, using a global and local linear gyrokinetic model. The trapped electrons are observed to destabilize the mode strongly. Comparison of the various parameter scans for the SWITG mode with and without the trapped electrons is presented. One important result obtained is that, while in the absence of the trapped electrons the mode was found to subside with increasing value of n=Ln /R exhibiting the character of a slablike mode, the presence of the trapped electrons has been observed to enhance the n=Ln /R window of the existence of the SWITG mode making the mode more toroidal like. © 2009 American Institute of Physics

    ORB5: a global electromagnetic gyrokinetic code using the PIC approach in toroidal geometry

    Get PDF
    This paper presents the current state of the global gyrokinetic code ORB5 as an update of the previous reference [Jolliet et al., Comp. Phys. Commun. 177 409 (2007)]. The ORB5 code solves the electromagnetic Vlasov-Maxwell system of equations using a PIC scheme and also includes collisions and strong flows. The code assumes multiple gyrokinetic ion species at all wavelengths for the polarization density and drift-kinetic electrons. Variants of the physical model can be selected for electrons such as assuming an adiabatic response or a ``hybrid'' model in which passing electrons are assumed adiabatic and trapped electrons are drift-kinetic. A Fourier filter as well as various control variates and noise reduction techniques enable simulations with good signal-to-noise ratios at a limited numerical cost. They are completed with different momentum and zonal flow-conserving heat sources allowing for temperature-gradient and flux-driven simulations. The code, which runs on both CPUs and GPUs, is well benchmarked against other similar codes and analytical predictions, and shows good scalability up to thousands of nodes

    Role of nonadiabatic untrapped electrons in global electrostatic ion temperature gradient driven modes in a tokamak

    Get PDF
    In this work, role of nonadiabatic untrapped electrons in the context of a global ion temperature gradient driven mode has been investigated. In past studies, untrapped electrons have been assumed to be able to respond "instantaneously" to a disturbance. It is proposed that such adiabatic electron models should be reexamined for two important reasons: (i) It is known that global modes with n in the range of 3 <= n <= 15 (n is the toroidal mode number) have eigenmode widths spanning several mode-rational surfaces. It is being argued that close to these mode-rational surfaces, adiabatic electron models fail and a consistent treatment of nonadiabatic electrons is crucial for global modes. (ii) Electromagnetic effects depend on passing nonadiabatic electron dynamics. A minimal nontrivial model for the benchmarking of global linear and nonlinear gyrokinetic codes in the future becomes necessary, which can treat both passing ions and electrons on the same physics footing. As a first step, a study of the effect of nonadiabatic passing electrons in global electrostatic ion temperature gradients is presented. Interesting results include a demonstration of multiscale structure, downshift in critical eta(i) with increasing eta(e), and a reduction in mixing-length based transport. (C) 2008 American Institute of Physics

    Vamsa: Automated Provenance Tracking in Data Science Scripts

    Full text link
    There has recently been a lot of ongoing research in the areas of fairness, bias and explainability of machine learning (ML) models due to the self-evident or regulatory requirements of various ML applications. We make the following observation: All of these approaches require a robust understanding of the relationship between ML models and the data used to train them. In this work, we introduce the ML provenance tracking problem: the fundamental idea is to automatically track which columns in a dataset have been used to derive the features/labels of an ML model. We discuss the challenges in capturing such information in the context of Python, the most common language used by data scientists. We then present Vamsa, a modular system that extracts provenance from Python scripts without requiring any changes to the users' code. Using 26K real data science scripts, we verify the effectiveness of Vamsa in terms of coverage, and performance. We also evaluate Vamsa's accuracy on a smaller subset of manually labeled data. Our analysis shows that Vamsa's precision and recall range from 90.4% to 99.1% and its latency is in the order of milliseconds for average size scripts. Drawing from our experience in deploying ML models in production, we also present an example in which Vamsa helps automatically identify models that are affected by data corruption issues

    Environmental impact of omnivorous, ovo-lacto-vegetarian, and vegan diet

    Get PDF
    Food and beverage consumption has a great impact on the environment, although there is a lack of information concerning the whole diet. The environmental impact of 153 Italian adults (51 omnivores, 51 ovo-lacto-vegetarians, 51 vegans) and the inter-individual variability within dietary groups were assessed in a real-life context. Food intake was monitored with a 7-d dietary record to calculate nutritional values and environmental impacts (carbon, water, and ecological footprints). The Italian Mediterranean Index was used to evaluate the nutritional quality of each diet. The omnivorous choice generated worse carbon, water and ecological footprints than other diets. No differences were found for the environmental impacts of ovo-lacto-vegetarians and vegans, which also had diets more adherent to the Mediterranean pattern. A high inter-individual variability was observed through principal component analysis, showing that some vegetarians and vegans have higher environmental impacts than those of some omnivores. Thus, regardless of the environmental benefits of plant-based diets, there is a need for thinking in terms of individual dietary habits. To our knowledge, this is the first time environmental impacts of three dietary regimens are evaluated using individual recorded dietary intakes rather than hypothetical diet or diets averaged over a population
    • …
    corecore