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In this work, role of nonadiabatic untrapped electrons in the context of a global ion temperature
gradient driven mode has been investigated. In past studies, untrapped electrons have been assumed
to be able to respond “instantaneously” to a disturbance. It is proposed that such adiabatic electron
models should be reexamined for two important reasons: (i) It is known that global modes with n
in the range of 3<n<15 (n is the toroidal mode number) have eigenmode widths spanning several
mode-rational surfaces. It is being argued that close to these mode-rational surfaces, adiabatic
electron models fail and a consistent treatment of nonadiabatic electrons is crucial for global modes.
(ii) Electromagnetic effects depend on passing nonadiabatic electron dynamics. A minimal
nontrivial model for the benchmarking of global linear and nonlinear gyrokinetic codes in the future
becomes necessary, which can treat both passing ions and electrons on the same physics footing. As
a first step, a study of the effect of nonadiabatic passing electrons in global electrostatic ion
temperature gradients is presented. Interesting results include a demonstration of multiscale
structure, downshift in critical #»; with increasing 7,, and a reduction in mixing-length based

transport. © 2008 American Institute of Physics. [DOI: 10.1063/1.2957917]

I. INTRODUCTION

Tokamak plasmas, which are stable to ideal magnetohy-
drodynamic (MHD) disturbances, exhibit transport of par-
ticles and energy across confining magnetic flux surfaces. On
longer time scales compared to particle and energy confine-
ment times, such transport phenomena which arise due to
equilibrium inhomogeneity are attributed to non-MHD-based
low-frequency collisionless drift motion of particles.

Among others, toroidal ion temperature gradient driven
drift modes (ITG),' trapped electron modes,” high-n Alfvén
ion temperature gradient driven modes, or high-» kinetic bal-
looning modes® (n is the toroidal mode number) have been
studied extensively both in linear and nonlinear regimes. For
large n where it is expected that the mode structure would be
localized to a magnetic flux surface, the ballooning formal-
ism is a commonly used technique. For global modes with
small n values, the usual ballooning formalism fails, thereby
global linear and nonlinear gyrokinetic models become
necessary.

For ITGs, such global gyrokinetic models show that the
linear growth rate peaks between n=3 and 5 such that
kgpri=0.5. For example, for typical DIII-D-like parameters,
the global electrostatic toroidal gyrokinetic spectral model
GLOGYSTO™ and time-evolving gyrokinetic codes® report
typical toroidal mode numbers in the range 3<n<15 with
eigenmode width and structure occupying a good fraction of
the minor radius a. These eigenmodes span several mode
rational surfaces (MRS) r=ryrs defined as ky,, ,(r=ryrs)
=0. In these models, the passing and trapped ions respond
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nonadiabatically while passing electrons are assumed
adiabatic.

An electromagnetic version of GLOGYSTO called EM-
GLOGYSTO has been developed by including passing drift
kinetic electrons coupled to A fluctuations’ followed by
fully gyrokinetic electron dynamics coupled to A, fluctua-
tions and equilibrium flows.® The code EM-GLOGYSTO
was generalized by including fully gyrokinetic nonadiabatic
passing ion and electron dynamics which couple to A
fluctuations,” Shafranov shift effects,'® followed by trapped
electron dynamics coupled to A | fluctuations.*'" It has been
shown that when passing drift kinetic electrons couple only
to A”,7 finite-B effects have a benign effect on ITGs with
adiabatic electron response. Within the same model, Alfvén
ITGs (AITGs) or kinetic ballooning modes (KBMs)>'*71¢ pe-
come more unstable with increasing ,8.7’10 Subsequent
studies'” with the more accurate gyrokinetic nonadiabatic
passing electron dynamics coupled to A; fluctuations have
shown about 10% change in growth rates of AITGs. How-
ever, in all the above-mentioned studies, the effect of nona-
diabatic passing electrons when coupled to electrostatic fluc-
tuations ¢ has not been explored.

In time-evolving gyrokinetic particle codes where ions
are pushed by solving Newton’s laws, the difference in mass
ratio of ions and electrons imposes a stringent constraint on
the numerical time-stepping. The assumption of adiabatic
electron response simplifies the computational demands
enormously. However, on a given magnetic flux surface, the
adiabatic electron model is known to introduce spurious
charge accumulation and zonal flows if electron adiabaticity
is not carefully imposed.]8 For example, a widely used pro-
cedure in time-evolving gyrokinetic particle codes is to sub-
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tract a flux-surface averaged electrostatic fluctuation from
the zonal component to enforce strict adiabaticity for elec-
trons. If one were to push electrons with finite mass in a
numerically consistent fashion, then such problems can be
avoided. Because of the ion to electron mass ratio, the ne-
cessity of using small time steps is seen as a difficulty in
time-evolving linear and nonlinear gyrokinetic particle
codes. It goes without saying that the above-mentioned
mass-ratio related physics issues are equally relevant to gy-
rokinetic Vlasov codes as well. For trapped electrons, more
sophisticated models'*™! are being developed, whereas for
passing nonadiabatic electrons very few models exists. With
more advanced physics models and larger computing facili-
ties, nonadiabatic electron dynamics on the scale of tokamak
minor radius and hence the global electrostatic and electro-
magnetic time-evolving simulations may become a reality.

Coming back to the global linear spectral models* """
described earlier, the above-mentioned difficulties found in
time-evolving gyrokinetic linear/nonlinear codes are avoided
as time evolution is replaced by frequency response of the
system. As a result, at least for the linear regime, both ions
and electrons can be handled on exactly the same physics
footing. This situation provides a strong advantage in favor
of the linear global gyrokinetic spectral models both physics-
wise and also as a stringent numerical test case for future
time-evolving nonlinear gyrokinetic codes with nonadiabatic
electrons. To demonstrate the claim, we focus on global elec-
trostatic ITGs with passing nonadiabatic ions, trapped ions,
and passing nonadiabatic electrons. We bring out interesting
qualitative and quantitative differences between ITGs with
the usual adiabatic electron response compared with the
nonadiabatic electrons response.

Such a study as presented here may be regarded as a
minimal nontrivial model for the numerical benchmarking of
present/future electrostatic global nonlinear gyrokinetic
codes which would treat both ions and electrons on the same
physics footing.

To this end, we focus on the electrostatic version of the
fully gyrokinetic, fully electromagnetic global linear stability
model EM-GLOGYSTO extensively studied and reported in
Refs. 4, 7, 10, and 17 as applicable to large aspect ratio
tokamaks. For the purposes of this study, Shafranov shift,
equilibrium flows, trapped electron effects, B |, and B fluc-
tuations are dropped, while particle nonadiabaticity for pass-
ing ions, trapped ions, and passing electrons, Landau damp-
ing of passing species, finite Larmor radius (FLR) effects to
all orders of all species, trapped and transit resonances, and
poloidal and radial coupling of modes due to particle drifts
across magnetic flux surfaces are included.

In Sec. II, starting from Vlasov equations, we outline the
basic model solved, obtain our basic equation for the nona-
diabatic part of the distribution function for a given passing
species, introduce gyro-averaging and a solution for the pass-
ing particle nonadiabatic effect in “guiding center coordi-
nates” in terms of a propagator, i.e., unit source solution,
construction of the propagator, derive relevant fluctuations in
“particle coordinates,” closure using quasineutrality assump-
tion, construction of various matrix elements in Fourier
space, diagnostics, and normalizations. For other details of
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the EM model, the reader is referred to Refs. 9 and 10. Sec-
tion III contains numerical results with adiabatic electrons as
a benchmark and new results with nonadiabatic electrons fol-
lowed by mode structure studies, mixing length based trans-
port studies, 7, studies, and downshift of critical 7, are pre-
sented. Conclusions are presented in Sec. IV and some
possible directions of future investigations are mentioned.

Il. MODEL EQUATIONS

To describe hot toroidal plasmas, collisionless Vlasov—
Maxwell equations are used. In the following, we invoke the
standard technique of gyrokinetic change of variables as em-
ployed by Catto et al.** with an eikonal or spectral ansatz to
obtain a gyrokinetic Vlasov equation. Among others, a self-
consistent and energy-conserving theoretical framework was
given by Hahm”’ based on Hamiltonian and Lie transforma-
tions, and more recently a variational formulation for the
gyrokinetic Vlasov—Maxwell system was given by Brizard**
resulting in gyrokinetic equations and gyro-averaged Max-
well’s equations for finite-8 plasmas. Theoretical formula-
tions used here are an extension of those studied in Ref. 4
and 17 with a major change, namely the addition of the
proper gyrokinetic nonadiabatic passing electron response to
the electrostatic potential fluctuation. As our interest is in
passing nonadiabatic electron dynamics, here we present a
description of the electrostatic formulation. Readers inter-
ested in details of the EM formulation are referred to Ref. 9.

As appropriate for a linear stability study, the full distri-
bution function f;(r,v,7) of species j is linearized about a
suitable equilibrium  f;=f;;(r,v) such that f,(r,v,7)
=fo,(r,v) +]7j(r,v,t) with the assumption that fj/foj< 1. Re-
taining terms up to first order, we get

D
— (r,v) =0, where
Dt u.t.p.foj( )
(1)
D J ;
— E—+I"V+2L(VXB)~VV,
Dt u.t.p. t mj
and
D ~ qi
. fj(r’v7t) == _.LE : va0j~ (2)
Dt u.t.p. mj

Here u.t.p implies unperturbed trajectories of particles, B
=V X A=B¢ is the equilibrium toroidal magnetic field, E is
the perturbed electrostatic field, and ¢; and m; are the electric
charge and mass of the species, respectively. Expressing E in
terms of @ and defining the following change of variables:
(r,v)—>(r,§=vz/2,ﬂ=vi/23) and using particle canonical
angular momentum for species j, i.e., woj:é(ﬁ'[r X (A
+myv/q)]l=d+mirv,lq;, one can  write  fo(r,v)
:foj(r,f,,u,, ;). Here cylindrical coordinates r=(r,¢,z)
have been introduced and ¢=rA, is the poloidal flux func-
tion per unit radian. Such a transformation would enable one
to express f; in terms of single-particle constants of motion.
Thus the V,f; term on the right-hand side (r.%.s) of Eq. (2)
becomes
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mirvy 9 \dfois Vi o
vaoj(ra g,,LL, woj) = V(l + ! ¢—> 0j¢ + T L Y0jy

q; I, 23 B du
miré, df,
e o AU i (3)
a9 Wil y=y

where f;,,= fo;(;=1) and &, is the toroidal unit vector. To
obtain Eq. (3), fy; is Taylor expanded to first order in
{mjrv 4/ qj} around ;= . Then, the following gyrokinetic
ordering 1s used o/w; <1,k 01;=0(1),kQ1;= 0/ Leg,
where k| ,kH ,0p; are perpendlcular and parallel perturba-
tion scales and Larmor radius of the species j, respectively,
and L is a typical equilibrium scale length. Rewriting fj in
Egs. (2), using the change of variables defined by

~ _4; oy
f»=h(-0)+<p—L[( V) +
r m; Q 23

and then invoking gyro-ordering followed by some standard
vector algebra, we arrive at

la_foﬂé] (4)

B du

D | Ifoin 0 d
—| nOrv.e)=- EL[M— s M Y
Dt],,., m;j| 9§ ¢ B du

1
4

pj

In Egs. (4) and (5), we have introduced the following defi-
nitions: Q,,;=w;B,/B, w.=q;B/mj, B,=|Vi|/r, and h; 04
the zeroth-order term of the perturbatlve series in the “in—
verse gyro- frequency expansion” of the nonadiabatic part
hj= h(0)+1/w i Wy 1/w Zh@) .. Note that since D/Dt
—O(W s only h;o is retalned which is independent of w;
and hence the gyro-angle (defined below). In the rest of this
presentation, h;.o) is referred to simply as ;. Equation (5) is
our starting equation. Now let us proceed with the gyro-
averaging procedure. In a large aspect ratio tokamak geom-
etry, the velocity v of a particle gyrating around a field line
is v=v,(é,cos a+éysin a)+vé, where unit vectors
(é9.€4,€4) define the toroidal coordinates and « is the gyro-
angle. We define gyro-averaging a quantity “Q” as

1 2
<Q>=2—f daQ(a; . .).
mJo

In Eq. (5), the terms in square brackets [...] on the right-hand
side are all equilibrium quantities and are independent of .
Thus only the electrostatic potential is to be averaged. Simi-
larly, on the left-hand side, hj is independent of «, hence

only D/ Dt|u't.p is to be gyro-averaged. Therefore,
D gyro-averaging D
— — —+ (e +v
Dtl,,, Dt|,q ~ il vay) - p R’

where v,;= (v / 2+v”)e /(rw;), u.t.g implies unperturbed
trajectory of guiding centers R defined by R=r+vX¢/w,;
Therefore,
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(@)=

1 2
[ etz et
m™Jo

r=R—v><eH/ij

Since @(r[«],?) is an unknown function, the gyro-averaging
is performed by first Fourier decomposing these functions,
then representing the particle coordinate r by gyro-center R
and remembering that

1 21
J,(x) = —f daexp[iu(x sin a—pa)].
277 0

One can obtain a gyro-averaged equation for the nonadia-
batic distribution function. With the above-mentioned proce-
dure, one obtains the following gyrokinetic equation:

D N\ iy 0 d
— hj(R,v,t):—(gL){m—+viW -V
Dt|,,, m; o0& ot B du
1 .
X (@(k;)Jo(k @) + O(e). (6)

The solution to Eq. (6) is obtained by the Green function
technique (unit source solution, say P).”> An explicit form of
‘P is obtained analytically by the method of characteristics of
unperturbed trajectories of guiding centers (u.7.g) and fol-
lowed by a perturbative technique for the guiding center
velocity.5 Moreover, the unit source solution, P, to Eq. (6) is
independent of the type of perturbation (electrostatic or elec-
tromagnetic) and solely depends on the considered equilib-
rium. We assume for equilibrium, foj, a local Maxwellian of
the form

ij(g’M’ lﬂ) _fMj(§7 lﬂ) - (277T(l,b')>3/2 eXp Tj(‘yb)/mj

mj

so that df(;/du=0 by choice and density profile N(¢) is
independent of the species type j. Thus, for a “sinusoidal”
time dependence, the solution to Eq. (6) in guiding center
coordinates R is

hi(R,v,w) =~ (@) fdk exp(ik - R(w— a);k))
J

X (P @(k;) ok 01)) + O(e).

Here, k=ké,+koéot+kyé, and =27/ Ap)k, with Ap=p,
—p;» which defines the radial domaln ky=n/r and ke—m/ 0;
1) is the eigenvalue and w;. —w,U[1+ 77J/2(vH/v,h] 3)
+7ij /ZU,hj] with w,;=(T;V, In Nk,)/(g;B) is the diamag-
netic drift frequency;, 7]j=(d InT7,)/(dInN). Note also that
since the large aspect ratio equilibria considered are axisym-
metric, the toroidal mode number “n” can be fixed and the
problem is effectively two-dimensional in (p, ) (configura-
tion space) or («,ky) (Fourier space).

As our interest is in nonadiabatic passing electrons, let
us now proceed to the construction of the propagator for
passing gyrokinetic species (For trapped ions, see Ref. 5).
Since a gyro-averaged Vlasov equation can be solved using a
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method of integrating along its u.t. g, for our special class of
“sinusoidal” time dependence, the solution P for a given
(k,w) is simply

t

dr' exp(i[k - (R

-0

t +
=f dr’ eXp(Lf dt”k-vg(t”)—Lwt’),

()

P(R,ks 69#9 0.9 w) = - R) - wt,])

where the guiding center velocity dR/dt=v,=v|+v,, and
R(?) is to be obtained by solving for guiding center trajecto-
ries as an “initial value problem” in equilibrium considered
above. This is done by first assuming that the cross-field drift
terms [v,] are small and drop them at the zeroth order and to
include them iteratively at the next order. This procedure
gives us P,

J X; J X, _
m=2—( My ) exp(e(p—p)(0-6,), (8
oy @~ okvy = poy;

where  x)=k &, &,=0,4 0, 0= % 1240/ (0.R), @,
=ov/(g(s)R),o=*1 (sign of v), k = K2+k%,, kyi=[nq(s)
-m]/(q(s)R), and 6, is defined as tan 6,=—«x/k, and s
=p/a, a— is the minor radius. A few points to be noted here
are as follows: (1) Note that the grad-B and curvature drift
effects appear through the argument of Bessel functions
(x(=k vyl @) of Eq. (8). Thus for example, “radial and po-
loidal coupling” vanishes if x=0 in Eq. (8) and one would
arrive at “cylindrical” results. Hence in our model, Bessel
functions in Eq. (8) bring about coupling between neighbor-
ing flux surfaces and also couple neighboring poloidal har-
monics. (2) The argument of Bessel functions J,’s in Eq (8),
ie., x <—k 1 &,, also depends on transit frequency w;, xtj can
become X,j= O(1). Hence transit harmonic orders are to be
chosen accordingly. In this form, P contains effects such as
transit harmonic and its coupling, parallel velocity reso-
nances, and poloidal mode coupling.

To obtain the particle density fluctuation 77,(r; ), one
needs to go from guiding center (GC) coordinate R to par-
ticle coordinate r using R=r+vX¢/w,., by replacing h;
using Eq. (4) followed by the integration over v keeping in
mind the gyro-angle integration over «. This last integration
on « yields an additional Bessel function “J;, for @. Thus, in
real space r, for species j, we finally have

(r;m) = - (%4\/){¢+fdk exp(ik - r)
j

20— )P ) B |

where x;;=k, 0;;. It may be worthwhile to emphasize that
equilibrium effects (incorporated in P) and perturbation ef-
fects are clearly delineated in the formulation. Equations are
finally closed by invoking the guasineutrality condition,
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> fir;w) =0. 9)

J
Equation (9) defines a generalized eigenvalue problem with
eigenvalue w and eigenvector ¢. This eigenvalue problem is
conveniently solved in Fourier space. By Fourier decompos-
ing the potential in Eq. (9) and then taking Fourier transform,
we obtain a convolution matrix in Fourier space. If we as-
sume a hydrogen-like plasma with ions, electrons, and
trapped ions, we have

2 2 /\A/l{(,k@k/:(’

k! J=ietr—i

where k=(«,m) and kK’'=(k",m’). Note that we have three
species: Passing ions (i), passing electrons (e), and trapped
ions (¢r-i). In the following, we discuss in detail the formu-
lation for passing species. For trapped ions, the reader is
referred to Ref. 4. With the following definitions, Ap=p,
—p; (upper and lower radial limits), A, =x—«’, and A,,=m
—m' matrix elements are

A

; 1 Py
My = A_p,[ dp exp(— tA,p)

pr

X [a,,&mmr +exp(id,,0) > 12,] ;
P

(10)
. 1 (P«
ME ., = —J dp exp(— tA,p)
K Ap P
exp(tA,,0
a, S5+ P(L )E io
) 1 =
where
. 1 J*Umax (p) . Uﬁ
P20 (0) d comax ) vg,(p)
o 7o
{N Lo — N5 !}
D 7 p'=p—(m-m')
U 1 max.j(p)
IZ:J — f 2n+ldvl
0
Xexp ——l)lz(xL')J EHIVSIEHIN
2vt2h,j(p) ALY p\tej I p! A
We have introduced the following definitions: v Lmax,j(p)

_min(U“/\: Umin;) Which is “trapped particle exclusion”
from o independent perpendicular velocity integral I j,

a,=1-/e/(1+e€) is the fraction of passing particles; ;, is
- dependent parallel integrals; x; -—k 1€ Ni=w-w, J[l
+(m/ D 1vg, )-3)] Ny=w ;”77,/(2Ut2h ) and DY/
= < (p) > (ng,=m'(1=p) (00, v y) ., where <, (p)
> =vy;(p)/ (rqy) is the average transit frequency of the spe-
cies j. As integrals I,‘:j are independent of w and dependent
only on v |, o, and other equilibrium quantities, one may
choose to calculate and store them as interpolation tables
(memory intensive) or, alternatively, one may choose to cal-
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TABLE I. Equilibrium profiles and parameters.

Phys. Plasmas 15, 072117 (2008)

Parameters

Equilibrium Profiles

e B-field: By=1.0T

» Temperature: Ty=T(sy)=7.5 keV
e Major radius: R=2.0 m

* Minor radius: a=0.5 m
¢ Radius: s=p/a 0.01 <s<1.0, 50=0.6
* L,y=0.4m, L;=0.2 m— 7 (50)=2.0

e 7(s)=T,(s)/T(s)=1.

¢ N-profile and T-profile

a &, tanh(s_so))
Ly s,
a Osy s—s

Ti.e(S)/To:eXP(— Lml tanh(ﬁ))
5S71:0~35’ 557':0.2 at s=s

N(s)/NO:exp(—

e g(s)=1.25+0.67 s>+2.38 s3-0.06 s*
such that g(s=s,)=2.0;
Shear § is positive and at s=s(, §=1.

culate them when needed (CPU-time-intensive). Various nu-
merical convergence tests have been performed with a num-
ber of radial and poloidal Fourier modes, equilibrium profile
discretization, and velocity integrals. In the next section, we
will specify some diagnostics and normalizations used in the
code.

A. Diagnostics: Eigenmode-averaged quantities

Simple diagnostics for various physical quantities are
computed as averages over the eigenmode. For example,
mode-averaged k% is computed as

2
Jfdp>,

m

fdp2m| (P(k,m)

m
; Plk,m)

(kg =

where quantities with suffix “(k,m)” imply Fourier weights
of corresponding perturbations.

B. Normalization for full radius calculation

[TP"E1)

Distances are normalized to minor radius “a,” i.e., s
=p/a. Radial position where 7; peaks is represented as s
=so. Frequencies and growth rates are normalized to wyq
=vyi(s=50)01/a* k, is normalized to its local (ion/electron)
inverse Larmor radius QZ}(S), kj to L;l (inverse density gra-
dient length scale), magnetic field B to B(s=0), density to
N(s=s), temperature T to T(s=s,), and velocities (v, ,v;) to
Uini(s) (i.e., to their radially local thermal values).

All input quantities to the code EM-GLOGYSTO are in
Sl units, except the temperature of given species, which is in
eV. Hence, for example, vy, is computed using vfhi(in m/s)
=T,(in Joule)/m,(in Kg)=|e|T,(in eV)/m,(in Kg), where |e|
is the absolute value of electronic charge. Thus, for
example, for parameters throughout this work, we have
wgo=3X10*s71,

lll. RESULTS AND DISCUSSION

We choose DII-D-like profiles and parameters (Table I)
to demonstrate the effect of nonadiabatic passing electrons
on global ITGs.

For these parameters, equilibrium profiles are shown
in Fig. 1. For the above-mentioned parameters,
p*=pri(s=s0)/a=0.0175.

A. n-scan: Effect of variation of 7., multiscale
features, and mixing length transport

Growth rates vy and real frequencies w, of global ITG
mode as functions of plasma toroidal mode number n are
shown in Fig. 2. Usual adiabatic electron response (i,
=nge¢/T,) is shown with solid lines, whereas results with a
nonadiabatic model for various values of 7, are shown by
dashed lines with open and filled circles. The growth peaks
around n=38,9. This result shows that electron nonadiabatic-
ity indeed affects the growth rates, in general. For finite time
taken by passing electrons to respond to E perturbations,
especially in regions where the magnetic surface is

mode-rational, &y, ,=0, the nonadiabatic contribution is
significant.

--=gs
m—— shear |§

7| m— Temperature N
0.2 ‘. ! + 057 1
- e Density d
-’ ’ ]
O = - i T T T O L i i i
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
S S

FIG. 1. (Color online) Equilibrium profiles for global ITG stability studies
(parameters for the table): Normalized density, temperature, and 7, (left)
and safety factor ¢ and magnetic shear § profiles as functions of normalized
radius s=r/a. Note that 7 peaks at s=p/a=s,=0.6.
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FIG. 2. (Color online) (a) Growth rates and (b) frequencies for profiles in
Fig. 1: Growth rate y and real frequency w, for 7,(sy)=2 with adiabatic
electron model (CJ), with nonadiabatic electron model at 7,(s,)=2.0 (O),
and 7,(s))=8 (@).

To elucidate this idea, for 7,=2.0, we have computed the
global eigenmode structures of global ITG at n=9, where the
growth rate peaks. Again, for electrons we have two cases:
(i) Adiabatic electron response and (ii) nonadiabatic electron
response with various values for 7,. For example, in Fig. 3,
eigenmode structures for the adiabatic electron case are com-
pared with the nonadiabatic electron response with 7,=2.

The “ballooning” nature of the modes on the “bad cur-
vature” region is also clearly demonstrated. For example,
unlike a “cylindrical” or “slab” ITG, here for each value of n

z/a
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there are about 10 poloidal mode numbers m coupled. This is
again seen in Fig. 4, where at a radial location, say s=r/a
=0.6, one can see a predominant Fourier contribution from
several m numbers. The global nature of the mode is ad-
equately demonstrated by projecting the eigenmode onto the
poloidal plane. The mode width indeed occupies about 30%
of the minor radius a extending over several mode-rational
surfaces r=rys-

Note that at locations where &, ,=0, the mode structure
is very sharp for ITGs with nonadiabatic electrons, whereas
no such effect is detectable for the ITGs with the usual adia-
batic electrons. Consequently, the radial wavenumbers k,
needed to be resolved increases, as seen in Fig. 5.

To understand the structures, let us look at the mode-
rational surfaces and phase velocity v',';hn across the entire
minor radius for equilibrium ¢ profiles shown in the above
table (Fig. 1). In Fig. 6, for n=9, w,/ky,,, the per-mode
phase velocity is plotted as a function of normalized radius
along with vy, and vy,;. If one assumes adiabatic electron
response, as is usually done, then in both rapidly increasing
regions of vﬁfn (i.e., as r—rygs) as well as in regular regions
(r# ryrs), e€lectrons are “forced” to respond “instanta-
neously.” However, as can be seen from Fig. 6, in regions
close to r=ryRs, electrons cannot respond instantaneously,
but take finite time to respond. Thus if the correct nonadia-
batic response is incorporated, then for all radial locations
(i.e., for all per-mode phase velocities), there would be ap-
propriate electron response. For example, for regions r
# rvrss Where v%’n is small compared to vy,(r), automati-
cally the response will be adiabatic. In the same way, as r
— r'mrss the local phase velocity increases and hence strong
deviations from nonadiabaticity occur, which will be auto-

-1 -08 -06 -04 -0.2 0.2 0.4 0.6 0.8 1

0
(r-R)/a

FIG. 3. (Color online) Two-dimensional eigenmode structure of global ITG at n=9, 7,(sy)=2 for adiabatic electron response (left column) and nonadiabatic
electron response (right column) at 7,(sy)=2. The global nature of the mode is clearly visible, covering about 30% of the minor radius.
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FIG. 4. (Color online) Poloidal Fourier components for the electrostatic mode shown in Fig. 3. Note that at each radial location, there are several poloidal
harmonics coupled. The location where &, ,=0 (i.e., ng=m) is indicated on the top axis. Nonadiabatic electrons introduce sharp structure near these points.

matically accounted for. Such nonadiabatic effects are indeed
important for global ITGs as they alter both the growth rate
and the mode structures remarkably.

An alternate way of understanding this situation is as
follows: Nonadiabatic electron response allows residual non-
neutralized E field, and introduces phase delay between den-
sity and potential fluctuations and the concomittant growth.
Multiscale features seen in mode structure may remind one
of nonlinear effects such as zonal flows, which “break up”
the modes resulting in slower rates of growth for ITGs. How-
ever, here the exact opposite happens. Linear mode structure
is “broken up” due to linear nonadiabatic response of elec-
trons introducing phase delays and thus pronounced growth.

In Fig. 7, we show a close-up of global eigenmodes with
adiabatic electron response and with nonadiabatic electron
response.

These multiscale structures in turn increase the effective
or mode-averaged wavenumber as compared to the adiabatic
electron model. For example, eigenmode averaged k,pp;,
kgpy;, and k| py; for the adiabatic electron model, the nona-
diabatic electron model at 7,=2 and 7,=8 are shown in Fig.
8 for various values of n. Note that due to the sharp radial
structure introduced by nonadiabatic electrons, the effective
k | pr; has been enhanced in both cases of 7,. It would then
be interesting to construct the so-called “mixing length”
transport for transport coefficient, Dy, = y/ <k2¢> from the lin-

FIG. 5. (Color online) Radial Fourier harmonics for each poloidal mode for the electrostatic mode shown in Fig. 3. Here we have used 144 modes. For
numerical convergence, we have tested with a larger number of radial harmonics and we observed that the results are converged. Convergence is not shown.
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FIG. 6. (Color online) Typical per-mode phase velocity w,/k,,, vs normal-
ized minor radius s=r/a for the equilibrium profile of ¢ shown in Fig. 1
with 7,(s0)=8, 7,(s9)=2, n=9. Location of peaks (r=r,,,) indicate mode
rational surfaces. Horizontal dashed lines are electron thermal velocities v,
at radial locations at the beginning (s=0.4) and end (s=0.7) of mode struc-
ture. There are two overlapping lines for ions. Horizontal dashed-dotted
lines are ion thermal speeds and continuous line is eigenmode averaged, i.e.,
global phase velocity (w,/kj,,.,)-

ear growth rate y and mode-averaged k |, i.e., (k). In Fig. 9,
we present the mixing-length estimates in the usual gyro-
Bohm units as a function of the toroidal mode number 7. It is
found that compared to the adiabatic electron model, the
transport predicted from global ITGs for nonadiabatic elec-
trons results in a reduction in transport. It is important to
note that the presence of nonadiabatic trapped electrons® may
alter the levels of transport observed here due to nonadia-
batic passing electrons. Such a study remains to be
addressed.

It may be of interest to note that both nonlinearly gener-
ated zonal flows and linear but nonadiabatic passing elec-
trons “break up” the mode structures. While the zonal flow
breakup is not related to any particular surface (k;=0 every-
where for the m=0,n=0 zonal flow potential perturbation),
the presently studied effect occurs due to m#0, n#0 but
k;=0 mode-rational surfaces.

Phys. Plasmas 15, 072117 (2008)
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FIG. 8. (Color online) Eigenmode averaged normalized mode numbers
(kgpr (O), <kprpy (©), and (k, py;) (k) as a function of toroidal mode
number n at 7;(sy)=2; (a) adiabatic electron response and (b) nonadiabatic
electron response at 7,(so)=2. (c) Same as in (b) at 7,(sy)=8.

B. 7; scan: Nonadiabatic electrons cause a downshift
of critical #;

Next, we study the effect of nonadiabatic passing elec-
trons on the critical ion temperature gradient parameter 7.
For adiabatic electrons, global ITGs are known to destabilize
at about 7, .;=1.1. Here, we follow the highest growth rate
mode, namely n=9, and we investigate the smallest value of
7; at which this mode becomes unstable. We have studied
again three cases: (i) Global ITGs with adiabatic electrons,
(ii) with nonadiabatic electrons at 7,=2, and finally (iii) with
nonadiabatic electrons with 7,=8. We find that the critical #;
is reduced compared to the adiabatic electron model. This
result is perhaps not surprising. As we have seen in the pre-
ceding section, nonadiabatic electrons tend to further desta-
bilize global ITGs as compared to global ITGs with adiabatic
electrons. Hence one may expect that a relatively weaker ion
temperature gradient would destabilize global ITGs now as
compared to the adiabatic model. This expectation is indeed
shown to be true in Fig. 10. Physics-wise, this result implies
that, for example, for similar density profiles, in tokamaks

(r—-R)/a

(r-

R)/a (r-R)/a

FIG. 7. (Color) Closeup of the two-dimensional eigenmode structure of global ITG at n=9, 7,=2 for (a) adiabatic electron response and (b) nonadiabatic

electron response at 7,(sg)=2. (c) Same as in (b) at 7,=8(sy).
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FIG. 9. (Color online) Mixing length estimate for transport coefficient
Dy =/ <ki> in gyro-Bohm units as a function of toroidal mode number 7;
7,(s0)=2 for (a) adiabatic electron response (solid line) and (b) nonadiabatic
electron response at 7,(sy)=2 (dashed line). (c) Same as in (b) at 7,(s))
=8 (dot-dashed line).

with steeper electron temperature gradient than ions, global
ITGs would become unstable for smaller values of 7; than
predicted by adiabatic electron models. Thus downshifting
critical #;. This linear phenomenon is in contrast to upshift-
ing of critical 7; when nonlinear zonal flows are allowed to
evolve simultaneously with ITGs.**%

IV. CONCLUSION

We have presented a 2D global gyrokinetic stability
study as applicable to large aspect ratio tokamaks. We have
focused on the effect of treating electrons on the same phys-
ics footing as ions, meaning fully nonadiabatic electrons. For
this study, we have included passing ions, trapped ions, and
passing electrons. The model includes arbitrary order FLR

351

051 b

0
11 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
ni

FIG. 10. (Color online) For the highest growth rate mode toroidal mode
number n=9, #; scan is performed for three cases of electron model: (a)
Adiabatic electron response (solid line) and (b) nonadiabatic electron re-
sponse at 7,(sy)=2 (dashed line). (c) Same as in (b) at 7,(sy) =8 (dot-dashed
line). Results clearly show that 7, .; is downshifted.
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effects, kinetic effects such as Landau damping, transit/
trapped particle resonances, poloidal and radial coupling, and
magnetic resonances. With the above-mentioned model for
electrons, we have reported the study of global toroidal ITGs
for low toroidal mode numbers in the range 3 <<n<<15. There
are several interesting new results:

1. For nearly the same values of #; and 7,, the global mode
structure is observed to change dramatically. With in-
creasing 7, values, i.e., with more nonadiabaticity,
growth rates also are seen to increase. Thus, we con-
clude that, in general, nonadiabatic passing electron dy-
namics destabilize global ITGs.

2. Important structural changes in the eigenmode structure
appear near the mode-rational surfaces where per-mode
kym., vanishes. On these surfaces, the local phase veloc-
ity grows quickly. Because the mode is global and spans
across several mode rational surfaces, generalizing elec-
tron dynamics, as done in the present study, introduces a
multiscale nature in global ITG eigenmodes. These ef-
fects in turn alter the effective k. A combination of
these effects appears to bring down the mixing length
transport estimates as compared to global ITGs with
adiabatic electron dynamics.

3. Finally, an important fall out is the downshift of critical
7; values as compared to the adiabatic electron model.

As discussed in the Introduction, trapped nonadiabatic
electrons are only beginning to be modeled using time-
dependent particle or Vlasov methods. However, passing
nonadiabatic electrons are responsible for bulk electric cur-
rents and their fluctuations. Assuming that both sophisticated
computing abilities as well as advanced physics modeling
will allow one to handle nonadiabatic passing electron dy-
namics in the future, then we believe that our model pre-
sented here would serve as a minimal nontrivial benchmark
for such time-dependent linear/nonlinear gyrokinetic particle
or Vlasov codes.
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