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The effect of trapped electrons on the ion temperature gradient �ITG� mode in a regime where its
wavelength is shorter than the conventional ITG mode �k��Li�1� has been studied. Such a mode
propagates in the ion diamagnetic direction with a typical scale length k��Li�1 and is termed as the
short wavelength ITG �SWITG� mode. The effect of the trapped electrons on this SWITG mode is
investigated, for the first time, using a global and local linear gyrokinetic model. The trapped
electrons are observed to destabilize the mode strongly. Comparison of the various parameter scans
for the SWITG mode with and without the trapped electrons is presented. One important result
obtained is that, while in the absence of the trapped electrons the mode was found to subside with
increasing value of �n=Ln /R exhibiting the character of a slablike mode, the presence of the trapped
electrons has been observed to enhance the �n=Ln /R window of the existence of the SWITG mode
making the mode more toroidal like. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3212890�

I. INTRODUCTION

Controlling anomalous transport to achieve better con-
finement of plasma is one of the important issues in the
present day fusion research. Low frequency �compared to the
ion gyromotion� and fine scale length �compared to the ion
Larmor radius� instabilities are considered to be responsible
for the deterioration of the confinement, leading to the
anomalous transport of particles and energy. These modes
draw their free energy from the density and temperature in-
homogeneities prevailing in a confined plasma. While elec-
tron transport exhibits multiscale feature ranging from the
electron Larmor radius �k��Li�1� of electron temperature
gradient �ETG�1–5 mode to the ion Larmor radius �k��Li

�1� of the trapped electron mode,6–9 ion transport driven by
the ion temperature gradient �ITG�10–12 mode, on the other
hand, is known to be unstable at one scale length on the
order of the ion Larmor radius �k��Li�1�.

However, of late, a new mode, with mode frequency in
the direction of the ion diamagnetic drift frequency, on the
intermediate scale between ITG and ETG modes with
k��Li�1 has been identified.13 This mode is found to be
driven by the temperature gradient of the ions in the presence
of the Landau resonance/inverse resonance in a slab geom-
etry and by the toroidal drift resonance in a toroidal geom-
etry, in combination with the nonmonotonic behavior of the
mode frequency with respect to the perpendicular wave num-
ber. Because of its occurrence in the short wavelength limit
and due to the nonadiabaticity of ions, the mode is named as
short wavelength ITG �SWITG� mode to distinguish it from
the conventional ITG mode at longer wavelength. It is gen-
erally speculated that, in the limit �k��Li�2�1, there should
be no mode intrinsic to the ion nonadiabaticity, since ion

dynamics in this limit is expected to be adiabatic. However,
if the scale length of the inhomogeneity is such that ��i, the
ion diamagnetic drift frequency becomes larger than the
mode frequency �, there can be an instability related to the
inhomogeneity in the ions even in this shorter limit.14

Initially, the mode was thought to be of hybrid type,14,15

requiring both �i and �e �ratio of the density to the tempera-
ture scale length of the ions and electrons, respectively� to be
above a threshold. Later parametric study by Gao et al.16

demonstrated that the electron nonadiabaticity is not an es-
sential ingredient for the mode to develop. Effect of the
nonadiabatic electrons is only to enhance the growth rate of
the mode. The theoretical study of this mode started with the
work of Smolyakov et al.13 in a sheared slab and toroidal
geometry using a local formulation. The work was then ex-
tended by Hirose et al.14 using a kinetic integral code based
on ballooning formalism. This was followed by the study of
the mode in the sheared slab15 and then in the toroidal ge-
ometry by Gao et al.16 Effects of shear flows on this mode
have been studied in the sheared slab geometry and found to
have strong stabilizing impact on the mode.17 However, it is
expected that the toroidal SWITG mode will need higher rate
of EXB flow shear for stabilization than the conventional
toroidal ITG mode as the former has higher frequency.16 De-
pendence of the critical gradient on the various physical pa-
rameters such as temperature ratio, toroidicity, magnetic
shear, and safety factor has been studied for this mode.18 It is
to be noted that such a double hump behavior was pointed
out a long way back by Pu et al.19 while studying the ion
mixing mode.

The main conclusions, from the past works are the fol-
lowing.

�1� In the slab limit �small toroidicity �n=Ln /R�, a strong
temperature gradient driven mode exists in the regimea�Electronic mail: ganesh@ipr.res.in.
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�k��Li�2�1. The instability requires both �i and �e to
be above a critical value.14,15 But later study16 reveals
that it is inherently an ion mode and exists even if the
electrons are adiabatic. The same is observed in the
work of Smolyakov et al.13

�2� Toroidicity has strong stabilizing effect on the mode.14

Stabilization occurs at �n�0.15.
�3� The instability is driven by magnetic shear and the

growth rate is approximately proportional to ��s�,14

where s stands for the shear. But a broader parameter
scan16 finds that the growth rate initially increases and
then starts decreasing with shear.

�4� Similar to the conventional ITG, it is also stabilized by a
modest 	, the ballooning parameter.

�5� Nonadiabatic circulating electron dynamics provide de-
stabilization.

�6� EXB flow shear has strong stabilizing effect on the
mode.

In all the aforementioned studies, the trapped electrons
were ignored. However, in a toroidal device, the trapped
electrons are inevitable, and as demonstrated in the present
work, can play a paramount role in defining the stability
properties of the mode. In the limit �be��, where �be is the
bounce frequency of the trapped electrons, the trapping of
the electrons prevents the thermalization along the magnetic
field line and the wave field appears stationary during a
bounce period. The trapped electrons, therefore, can alter the
stability properties of the mode significantly.

The other lacuna of the earlier studies is that they were
done either using a local kinetic theory or at the best kinetic
theory based on ballooning formalism in the slab as well as
toroidal geometry. A ballooning formalism is essentially a
one dimensional model in 
b, the ballooning angle. There-
fore, the estimation of the characteristic radial scale length of
the mode is not possible unless one uses the higher order
ballooning theory. Thus, to understand the two dimensional
mode structure in the presence of the trapped electrons, a
global model becomes necessary. Also, an estimation of the
radial scale length of the mode is not only required for com-
pleteness but also help estimate the probable transport in-
duced by the mode. In fact, for the first time, the two dimen-
sional SWITG mode structure will be shown in the present
work. For the parameters chosen, the SWITG mode is found
to be quite global.

Thus, the purpose of the present work is twofold: first, to
incorporate the trapped electrons to the SWITG mode and,
second, to use a global linear electrostatic gyrokinetic model,
which enables one to evaluate the two dimensional mode
structure of the SWITG mode.

The inclusion of the trapped electrons has drastic effect
on the growth rate as well as the real frequency of the
SWITG mode, in contrast to the earlier speculation that the
trapped electrons may not be significant for the mode. The
trapped electrons enhance the growth rate of the mode sub-
stantially because of the nonideal effects such as the mag-
netic drift resonance and reduction in the adiabatic fraction
of the electrons. The trapped electrons enhance the real fre-
quency which may lead to weaker Landau damping of the

wave by the ions. This perhaps is another reason of the mode
getting unstable in the presence of the trapped electrons. The
parameter regime of the existence of the mode, consequently,
gets widened introducing new domain of instability. Also, the
mode structure of the so-called SWITG mode has been ob-
served to be quite global, even though it exists at short wave-
length compared to the ion Larmor radius. The mode struc-
ture spans over a substantial fraction of the tokamak poloidal
cross section.

In this work, we use the electrostatic version of the
widely used20–27 fully electromagnetic code EM-GLOGYSTO

based on a global linear gyrokinetic model, treating all the
species gyrokinetically as applicable to the large aspect ratio
tokamak. The model uses finite Larmor stabilization �FLR�
effect to all orders, all the kinetic resonances, poloidal and
radial coupling due to the particle drifts across the magnetic
flux surfaces, the trapped electrons and fully nonadiabatic
ions, true ion to electron mass ratio, and profile variation.
The perturbed B� and B� components of the magnetic field,
Shafranov shift, and equilibrium flow have been dropped. A
local version of this gyrokinetic formulation is also used for
the purpose of comparison.

The subsequent parts are arranged as follows. Section II
presents the basic set of gyrokinetic equations for the global
as well as the local formulation; Sec. III addresses the results
of our numerical study using both the local and the global
gyrokinetic formulation. The dispersion diagrams of the
SWITG mode with and without the trapped electrons fol-
lowed by a comparative study of the parameter dependence
of the mode for the two cases will be discussed one by one.
Finally Sec. IV presents the conclusion from the results ob-
tained.

II. MODEL EQUATIONS

A. Global formulation

In real space r, for the species j, the perturbed density
can be expressed as

ñj�r;�� = − �qjN

Tj
	
�̃ +� dk exp��k · r�

� dv
fMj

N
�� − � j

����U j,�T j��̃�k;�J0
2�xLj�� ,

�1�

where the first term on the right hand side corresponds to the
adiabatic response while the second term represents the
nonadiabatic response of the particles to a perturbation with
all its kinetic effects. Here, qj and Tj stand, respectively, for
the charge and temperature of the species j, N is the equilib-
rium density, � j

�=�nj�1+ �� j /2���v�
2 /vthj

2 �−3�+� jv�
2 /2vthj

2 �
with �nj = �Tj�n ln Nk
� / �qjB� is the diamagnetic drift fre-
quency; � j = �d ln Tj� / �d ln N� is the ratio of the density to
temperature gradient scale lengths, v� and v� represent, re-
spectively, the parallel and the perpendicular velocity, vthj is
the thermal velocity of the species j. J0�xLj� is the Bessel
function of argument xLj =k��Lj, accounting for the finite
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Larmor radius effect to all orders. We consider a local Max-
wellian for each species of mass mj as

fMj��,�� =
N���


2�Tj���
mj

�3/2exp
−
�

Tj���/mj
� ,

where �=v2 /2. Also in Eq. �1� U j represents the guiding
center propagator for the passing particles of the types j
= i ,e and T j represents the guiding center propagator for the
trapped particles of the types j= i ,e both describing the equi-
librium guiding center motion. For details of the propagators
for both passing and trapped particles the reader is referred to
the Refs. 20, 24, and 25. Introducing the quasineutrality con-
dition, one can close the set of equations in ñj as


j

ñj�r;�� = 0. �2�

One would, thus, finally end up with a generalized eigen-
value problem where � and �̃, respectively, are the eigen-
value and the eigenvector. This can be then conveniently
solved in the Fourier space by Fourier decomposing the po-
tential in Eq. �2� first and then taking the Fourier transform,
to eventually obtain a convolution matrix in the Fourier
space. With the single charged passing ions, electrons along
with the trapped electrons we have


k�


j=i,e

M̂k,k�
j

�̃k� + 
k�


j=tr−e

M̂k,k�
j

�̃k� = 0.

The axisymmetry of the system considered here enables one
in the linear analysis to fix the toroidal mode number n, so
that the notation k= �� ,m� for the wave vector defines the
radial wave number � and the poloidal wave number m.
Thus, k= �� ,m� and k�= ��� ,m��. Note that we have consid-
ered three species here: nonadiabatic passing ions �i�, adia-
batic passing electrons �e�, and trapped electrons �tr−e�.

B. Diagnostics: Eigenmode-averaged quantities

Simple diagnostics for various physical quantities are
computed as averages over the eigenmode. For example,
mode-averaged k


2 is computed as

�k

2� =

� d�m �m

�
��k,m��2

� d�m
���k,m��2

, �3�

where quantities with suffix �k ,m� imply Fourier weights of
corresponding perturbations.

C. Local formulation

Integrating the following local gyrokinetic equation, for
which k��k
 and k� =constant, to get the perturbed density:

f j = −
qjFMj

Tj
�̃ +

qjFMi

Tj
�� − ��j��iU j,iT j�Jo

2�k�� j��̃ , �4�

one can write ñj as

ñj�k� = −
qjNj

Tj

1 −

1
�2�vthj

3 � dv�dv�v�e−v2/2vthj
2

��

− ��j��iU j,iT j�J0
2�k��Lj���̃ , �5�

where the propagator for the untrapped particles is given by
iU j =1 / ��−k�v� −�dj�, while that of the trapped particles is
given by iT j =1 / ��−�dj�. Using the quasineutrality condi-
tion and considering the passing electrons to be adiabatic and
adding the trapped electrons, one would finally get

1 + � − ��2��I00
tr−e − �I00

i = 0. �6�

The trapped electron integral I00
tr−e is weighted by the trapped

fraction �2�, �=r /a, and �=Te /Ti. Here we put

Ĩl,p
j =

1
�2�vthj

3 � dv�dv�v�e−v2/2vthj
2

�� − ��j��iU j,iT j�

� v�

vthj
	l� v�

vthj
	p

J0
2�k��Lj� .

III. RESULTS AND DISCUSSION

In the present section, we will delineate the results from
the global and the local gyrokinetic formulation and compare
the cases of SWITG without the trapped electrons and with
the trapped electrons. It is to be noted that the frequencies are
normalized with vthi /a throughout the paper. Let us consider
the following profiles and parameters.

Parameters Equilibrium profiles

B-field: B0=1.0 Tesla N-profile and T-profile

Temperature: T0=T�s0�=7.5 keV
N�s�/N0 = exp
−

a�sn

Ln0
tanh� s − s0

�sn
	�

Major radius: R=2.0 m
Ti,e�s�/T0 = exp
−

a�sT

LT0
tanh� s − s0

�sT
	�

Minor radius: a=0.5 m �sn=0.35, �sT=0.2 at s=s0

radius: s=� /a , 0.01�s�1.0, s0=0.6 q�s�=1.25+0.67 s2+2.38 s3−0.06 s4

Ln0=0.2 m, LT0=0.08 m→�i,e�s0�=2.5 such that q�s=s0�=2.0;

��s�=Te�s� /Ti�s�=1, �n=Ln0 /R=0.1 Shear ŝ is positive and ŝ=1 at s=s0

The equilibrium profiles corresponding to these parameters are shown in Fig. 1. The
chosen parameters lead to the value of ����Li�s=s0� /a�0.0175.
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FIG. 1. �Color online� Equilibrium profiles to study the global SWITG
mode �for parameters in Table I�: �a� normalized density �square�, tempera-
ture �circle�, �i,e �triangle�, �b� safety factor q �circle�, and magnetic shear ŝ
�diamond� profiles as functions of normalized radius s=r /a. Note that �
peaks at s=� /a=s0=0.6 and is equal to 2.5. Also q�s0=0.6�=2.0, ŝ�s0

=0.6�=1.0, �n�s0=0.6�=0.1, and ��s0=0.6�=1.0.
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A. k��Li scan

Figure 2 shows the growth rates of the SWITG mode
with respect to k
�Li for the case �1� without the trapped
electrons and �2� with the trapped electrons as obtained with
the global as well as the local gyrokinetic model. The upper
axis displays the corresponding toroidal mode numbers n.
Let us first consider the curve with solid line and open
circles. This presents the growth rate from the global model
versus k
�Li for the SWITG mode without the trapped elec-
trons. The growth rate increases at lower k
�Li, peaks at
k
�Li�0.5, n=9, and then starts falling again, with a mini-
mum at k
�Li�0.8, n=14. After this point, the growth rate
exhibits a similar trend as the first hump and peaks at k
�Li

�1.3, n=21. The dotted line with open circles is the similar
curve obtained from the local model without the trapped
electrons. The peaks for both the conventional ITG and the
SWITG modes are shifted toward higher k
�Li in comparison
with the global results. The first peak appears at k
�Li

�0.65 and the second peak appears at k
�Li�1.5 corre-
sponding, respectively, to the ITG and the SWITG mode.
The growth rates are slightly higher in the case of the local
results than those obtained in the case of the global results.
The real frequency as shown in Fig. 3 �solid line with open
circle for the global model and dotted line with open circle
for the local model�, on the other hand, increases with k
�Li

up to the point k
�Li�0.8 and k
�Li�1.3, respectively, for
the global and the local model. Beyond this point, the fre-
quency starts to behave nonmonotonically with k
�Li. For
both the cases, the first hump corresponds to the conven-
tional ITG mode. In this region, the mode frequency being
proportional to the k
�Li increases almost linearly with k
�Li.
The ITG mode then smoothly changes to the high k SWITG
mode. The nonmonotonic part can be considered as one of
the characteristics of the SWITG mode. From Fig. 2, it is
clear that the SWITG mode also suffers FLR stabilization
like the conventional ITG; the mode growth rate increases
initially then peaks at k
�Li�1.3 �k
�Li�1.5� for the global
�local� mode and then starts falling.

Following the formulation of Gao et al.,15,16 the non-
monotonic behavior of the real frequency and the double
humped growth rate can be explained qualitatively using the
local gyrokinetic model for which k��k
. Let us rewrite the

perturbed distribution function f̃ i for the ions as

f i = −
qiFMi

Ti
�̃ +

qiFMi

Ti
� � − ��i

� − �di − k�v�
	Jo

2�k��Li��̃ . �7�

The first part corresponds to the adiabatic response while the
second part corresponds to the nonadiabatic response of the
ions. Integrating over velocity, to get the perturbed density
for the ions in the limit �n��� ��di+k�v��, one can write

ñi = −
qino

Ti
�̃ +

qi

Ti
�̃

�ni��i/2 − 1�
�

I0�k�
2 �Li

2 �exp�− k�
2 �Li

2 � ,

�8�

where I0 is the modified Bessel function of order zero. Since
the SWITG mode can exist even with the adiabatic electrons
and retains its basic characters, we for simplicity drop the
nonadiabatic part of the electrons and consider them to be
adiabatic, i.e., ñe /no=qe�̃ /Te. The quasineutrality condition
will then give

� = � �

� + 1
	��i

2
− 1	�niI0�k�

2 �Li
2 �exp�− k�

2 �Li
2 � , �9�

where �ni=−�vthi /Ln��k��Li�. Thus, it is clear from the ex-
pression that the mode frequency � behaves as
�niI0�k�

2 �Li
2 �exp�−k�

2 �Li
2 � which for small k�

2 �Li
2 scales as

k��Li and for larger k�
2 �Li

2 scales as almost a constant. It is
because, from the property of the scaled modified Bessel
function, one finds that I0�k�

2 �Li
2 �exp�−k�

2 �Li
2 �

→1 /�2��k�
2 �Li

2 �=1 /�2��k��Li� for large k�
2 �Li

2 and �ni

�k��Li. This explains the nonmonotonic part of the real fre-
quency. Regarding the growth rate, in the toroidal geometry,
it is the toroidal magnetic drift term �di of the ions, the
resonance of which with the mode frequency gives rise to the
double hump behavior. It is to be noted that �di

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.40 4 8 12 16 20 24 28 32 36 40n=

kθρ
Li

γ
a/

v th
i

γ, No trapped electron, Global result

γ, With trapped electron, Global result

γ, No trapped electron, Local result

γ, With trapped electron, Local Result

FIG. 2. �Color online� The normalized growth rate �̃ of the ITG �first peak�
and of the SWITG �second peak� mode with �solid line+square� and without
�solid line+circle� the trapped electrons from the global as well as the local
formulation �dotted line+diamond for the case with the trapped electrons
and dotted line+circle for the case without the trapped electrons� �e,i�s0�
=2.5, q�s0�=2.0, ŝ�s0�=1.0, �=1.0, and �n=0.1. The upper axis shows the
corresponding toroidal mode numbers.
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0 4 8 12 16 20 24 28 32 36 40n=

kθρ
Li

ω
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v th
i

ω
r
, No trapped electron, Global result

ω
r
, With trapped electron, Global result

ω
r
, No trapped electron, Local result

ω
r
, With trapped electron, Local Result

FIG. 3. �Color online� The normalized real frequency �̃r of the ITG and of
the SWITG mode with �solid line+square� and without �solid line+circle�
the trapped electrons from the global as well as the local formulation �dotted
line+diamond for the case with the trapped electrons and dotted line
+circle for the case without the trapped electrons� �e,i�s0�=2.5, q�s0�=2.0,
ŝ�s0�=1.0, �=1.0, and �n=0.1. The upper axis shows the corresponding
toroidal mode numbers.
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��Ln /R��ni and thus scales as k��Li. Therefore, the ratio
� /�di at first increases for small k��Li and then decreases as
the numerator saturates but the denominator still grows as
k��Li.

The FLR stabilization of the SWITG mode can be in-
ferred from the nonadiabatic part of ion density response. At
very high k��Li, �di surpasses � and the nonadiabatic part of
the perturbed ion density can be reduced to, for �di��,

ñi
na =

qi

Ti
�̃

�ni��i/2 − 1�
�di

I0�k�
2 �Li

2 �exp�− k�
2 �Li

2 � , �10�

which for large k��Li will decrease according to

�ni

�di
I0�k�

2 �Li
2 �exp�− k�

2 �Li
2 � �

R

Ln
I0�k�

2 �Li
2 �exp�− k�

2 �Li
2 �

�11�

as k�
2 �Li

2 increases.
Having elucidated the basic characters of the SWITG

mode, let us now see what happens to the mode when
trapped electrons are included. In Fig. 2 the solid line with
squares represents the growth rates from the global model
and the dotted line with diamonds represents the growth rates
from the local model with trapped electrons present in both
the cases. Similar curves in Fig. 3 represent the correspond-
ing real frequencies. It is clear that for both the cases, the
growth rate rises substantially in the presence of the trapped
electrons. The mode frequencies also increase as compared
to their counterparts with no trapped electrons. The global
curve for growth rates peaks at k
�Li�0.4, n=7, while the
local curve peaks at k
�Li�0.55 for the conventional ITG.
For the SWITG mode, the growth rate peaks at k
�Li�1.3,
n=21, for the global result while it peaks at k
�Li�1.7 for
the local result. It is to be noted that the local growth rates
stay below the global growth rates for most of the part of the
k spectrum. Beyond k
�Li�2.0, the global growth rates fall
faster than the local growth rates.

The strong rise in the growth rate of the SWITG mode in
the presence of the trapped electrons can be explained, simi-
lar to the conventional ITG mode, as follows. In a toroidal
plasma with ITG, a pressure perturbation in the outboard
side creates hotter and colder regions locally. The magnetic
drift velocity vd of the ions, which depends on the tempera-
ture, is therefore different in regions of different tempera-
tures. This produces variations in the local concentration of
the ion density giving rise to a potential perturbation and
concurrently a poloidal electric field. The SWITG instability
arises because of the radial EXB drift produced by this elec-
tric field in the presence of the applied magnetic field. When
one considers electrons to be adiabatic, the moment charge
separation is produced, these electrons move to the regions
of charge separation and wipe out the space charge, thus
denying the possibility of building up of EXB advection or
reducing it. However, in a toroidal geometry, because of 1 /R
dependence of the magnetic field, some electrons are
“trapped” on the weaker magnetic field region and fail to

behave adiabatically, in the sense that their motion is re-
stricted to a limited region of the magnetic field lines.
Trapped electrons, therefore, cannot respond adiabatically to
reach the region of EXB advection and participate in cancel-
ing the charge separations, thereby allowing finite time for
the mode to grow. The SWITG growth rate thus gets en-
hanced, when one considers the fraction of the trapped elec-
trons.

The presence of the trapped electrons increases the real
frequency and hence the phase velocity of the wave. This can
perhaps make the wave off resonant with the ions and leads
to weaker Landau damping of the wave by the ions with the
concomitant enhancement in the growth rate. The SWITG
growth rate, therefore, increases with the inclusion of the
trapped electrons.

Figure 4 presents the mode structure of �a� the conven-
tional ITG at n=9 and �b� the SWITG at n=21 both corre-
sponding to the maximum growth rate without the trapped
electrons. The eigenmode-averaged radial wave numbers for
the two cases are �kr�Li�=0.687 and �kr�Li�=0.702, respec-
tively. These figures show clearly that although the mode is
termed as SWITG, its mode structure is quite global albeit
lesser than the conventional ITG mode. The mode structure
spans over a considerable fraction of the poloidal cross sec-
tion of a tokamak. It corroborates the necessity of a global
model to study the SWITG mode. Figure 5 then displays the
mode structures, respectively, of the �a� conventional ITG
mode with the trapped electrons at n=7 and �b� SWITG
mode with the trapped electrons at n=21, both corresponding
to the maximum growth rate of the mode. It is to be noted
that the corresponding eigenmode-averaged radial wave
numbers in these cases are �kr�Li�=0.489 and �kr�Li�=1.132,
respectively. For clarity, we present a closeup view of the
mode structures in Fig. 6 for the case without the trapped
electrons with Fig. 6�a� for the conventional ITG mode and
Fig. 6�b� for the SWITG mode and in Fig. 7 for the case with
the trapped electrons with Fig. 7�a� for the conventional ITG
mode and Fig. 7�b� for the SWITG mode.

Figure 8 portrays the poloidal Fourier components for
the cases of �a� the ITG mode at n=9, �b� the SWITG mode
at n=21 without the trapped electrons, �c� the ITG mode at
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FIG. 4. �Color online� Two dimensional eigenmode structures of �a� the ITG
mode at k
�Li�0.5, n=9, �b� the SWITG mode at k
�Li�1.3, n=21 without
the trapped electrons both corresponding to the maximum growth rate. The
mode structure of the SWITG mode is finer than the ITG mode but yet
global enough.
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n=7, and �d� the SWITG mode at n=21 with the trapped
electrons. The strong poloidal coupling of the mode brought
about by the cross field drift of the particles is quite apparent
from these figures. Figure 9 shows the radial Fourier har-
monics for the modes displayed in Figs. 4 and 5.

B. �n scan

The Ln /R scan is performed varying R but keeping Rq,
n /R, a, and Ln constant. Figure 10 presents the growth rates
for the two cases: �a� without the trapped electrons �circle�
and �b� with the trapped electrons �square� from the global
gyrokinetic formulation. Local results are not shown here. It
is clear that the SWITG mode subsides more rapidly with �n

and vanishes at around �n�0.17. It is argued, therefore, in
the earlier literature that the SWITG mode is preferentially a
slab mode which decays with increasing toroidicity. The de-
crease in the growth rate with Ln /R can again be attributed to
the reduction in the nonadiabatic fraction of the ion’s per-
turbed density response with Ln /R, as it scales as inverse of
Ln /R as apparent from Eq. �10�. Inclusion of the trapped
electrons, however, widen the Ln /R window. The mode sus-
tains to a higher value of Ln /R. Thus, one concludes that the
trapped electrons have deleterious effect on the SWITG
mode enhancing not only its growth rate but also widening
its parameter regime of existence. The fact is that, with in-
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FIG. 5. �Color online� Two dimensional eigenmode structures of �a� the ITG
mode at k
�Li�0.4, n=7, �b� the SWITG mode at k
�Li�1.3, n=21 with the
trapped electrons, both for the maximum growth rates, respectively. The
mode structure of the SWITG mode is finer than the ITG mode but still
global enough.

0.2 0.4 0.6
−0.5

−0.4

−0.3

−0.2

(r−R)/a

z/
a

(a)

0.2 0.4 0.6

(r−R)/a

(b)

n=21n=9

FIG. 6. �Color� A closeup view of the eigenmode structures of �a� the ITG
mode at k
�Li�0.5, n=9, �b� the SWITG mode at k
�Li�1.3, n=21 without
the trapped electrons shown in Fig. 4.
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FIG. 7. �Color� A closeup of the two dimensional eigenmode structures of
�a� the ITG mode at k
�Li�0.4, n=7, �b� the SWITG mode at k
�Li�1.3,
n=21 with the trapped electrons shown in Fig. 5.
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FIG. 8. �Color online� Poloidal Fourier components for electrostatic modes
shown in Figs. 4 and 5, �a� the ITG mode at k
�Li�0.5, n=9, �b� the
SWITG mode at k
�Li�1.3, n=21, both without the trapped electrons, �c�
the ITG mode at k
�Li�0.4, n=7, and �d� the SWITG mode at k
�Li�1.3,
n=21, both with the trapped electrons.
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FIG. 9. �Color online� Radial Fourier components for electrostatic modes
shown in Figs. 4 and 5, �a� the ITG mode at k
�Li�0.5, n=9, �b� the
SWITG mode at k
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creasing toroidicity the fraction of the trapped particles
which is proportional to �r /R also increases. Therefore, in
contrast to the previous case of the SWITG where toroidicity
has strong stabilizing effect, making the mode vanish beyond
Ln /R�0.15, the SWITG in the presence of the trapped elec-
trons can exist above this limit, as the stabilizing effect of the
toroidicity is compensated by the destabilizing effect of the
trapped electrons. In Fig. 11, the corresponding real frequen-
cies are shown. Solid line with circles presents the case with-
out the trapped electrons and solid line with squares presents
the case with the trapped electrons. While, with toroidicity
the growth rates decay, real frequencies on the other hand
increase with the toroidicity. Thus, although earlier SWITG
was thought to be stable beyond some specific value of �n,
the trapped electrons can make it unstable for a general set of
parameters. Therefore, the theories for experimentally ob-
served anomalous transport, explained with the conventional
ITG mode coupled with trapped electrons and the trapped
electron mode as the plausible candidates, should be revis-
ited. It is perhaps worth noting at this point that experimen-

tally Wong et al.28 reported the observation of such a short
wavelength fluctuation in the context of electron transport.
The mode has frequency lower than the ion diamagnetic drift
frequency and propagates in the ion diamagnetic direction as
the SWITG mode studied here. However, k��Li measured is
higher ��5� than the one found in our simulation.

C. �i scan

To demonstrate the temperature gradient dependence of
the SWITG mode, an �i scan for the maximum growth rates
is shown in Fig. 12 without �circles� and with �squares� the
trapped electrons using the global gyrokinetic model. It is
clear from the figure that the SWITG mode without the
trapped electrons is inherently an ion mode, requiring no
finite �e and solely depends on the temperature gradient of
the ions. The dependence of the mode growth rate on �i is
quite similar to the conventional ITG which decays with de-
creased �i. The SWITG mode decays as one reduces �i and
vanishes completely around �ic�1.2. Inclusion of the
trapped electrons, on the other hand, restricts the mode to
vanish, rather the mode transforms from the ITG driven
mode to the trapped electrons driven mode. When the ion
drive is reduced by reducing �i, the growth rate decreases,
but since the mode now includes the trapped electrons with
finite �e, mode inherent to the trapped electrons takes over
the ion gradient driven mode. Thus, the SWITG mode trans-
forms from dominantly ITG driven mode to dominantly ETG
driven mode as the �i of the ions is reduced keeping �e fixed.
The transition takes place at around �i�1.6. The corre-
sponding real frequencies without �circles� and with
�squares� the trapped electrons are shown in Fig. 13. Both
reduce almost linearly with �i, but because of the presence of
the trapped electrons the later reduces faster than the former
and tend to move in the electron diamagnetic direction. It is
because of the fact that the mode inherent to the trapped
electrons with finite �e starts to dominate over ITG driven
mode as one reduces the �i.
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FIG. 10. �Color online� Normalized growth rates �̃ vs �n scan for the
SWITG mode at k
�Li�1.3 with �solid line+square� and without �solid
line+circles� the trapped electrons �from the global gyrokinetic model�.
�e,i�s0�=2.5, q�s0�=2.0, ŝ�s0�=1.0, �=1.0, Ln=0.2, and a=0.5.

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−3

−2.5

−2

−1.5

−1

−0.5

ε
n

ω
r
a/

v th
i

ω
r
, No trapped electron

ω
r
, With trapped electron
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�Li�1.3 with �solid line+square� and without �solid
line+circles� the trapped electrons �from the global gyrokinetic model�.
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FIG. 12. �Color online� Normalized growth rates �̃ vs �i scan for the
SWITG mode at k
�Li�1.3 with �solid line+square� and without �solid
line+circles� the trapped electrons �from the global gyrokinetic model�.
�e�s0�=2.5, q�s0�=2.0, ŝ�s0�=1.0, �=1.0, and �n=0.1.
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D. � scan

To look at the temperature dependence of the mode, a
�=Te /Ti scan is shown in Figs. 14 and 15 for the growth rate
and the real frequency, respectively, using the global gyroki-
netic model. The growth rate in Fig. 14 for the SWITG mode
without the trapped electrons �circles� increases gradually
with �, and at higher value it starts saturating. For the case
with the trapped electrons �square�, on the other hand, it
increases initially and becomes maximum in the region �
�1–2. It then falls and finally saturates. This can be ex-
plained from the fact that in the first case electrons are con-
sidered adiabatic, while the trapped electrons are included in
the second case. So, at ��1, Te�Ti, the electron drive ap-
pears to be stronger reducing the growth rate in the later
case. This is apparent from the Fig. 15 where the real fre-
quencies are plotted against �. For the case with the trapped
electrons, as � increases the dominant electron drive pulls the
real frequency toward the electron diamagnetic direction.
Therefore, the real frequency decreases with increasing � go-
ing toward more positive value, and then saturates. For the
case without the trapped electrons, however, the real fre-
quency rises initially with � and then starts saturating in line
with its corresponding growth rates.

E. Mixing length estimation

It will be interesting to calculate the heat diffusivity of
the ions in the presence of the SWITG mode, over and above
the conventional ITG mode. Within our linear model, we do
this using the mixing length estimation where � / �k�

2 �, with
k�=�kr

2+k

2, kr and k
 being, respectively, the radial and po-

loidal wave numbers of the mode, is plotted with respect to
the k
�Li. Thus, the heat diffusivity � / �k�

2 � of the ions in the
gyro-Bohm unit is depicted in Fig. 16 for the SWITG mode
without �circle� and with �square� the trapped electrons. The
diffusivity increases initially with k
�Li, peaks at k
�Li�0.5,
and then starts falling for the first case, but decreases mono-

1.4 1.6 1.8 2 2.2 2.4 2.6
−2.5

−2

−1.5

−1

−0.5

0

η
i

ω
r
a/

v th
i

ω
r
, No trapped electron

ω
r
, With trapped electron

FIG. 13. �Color online� Normalized real frequency �̃r vs �i scan for the
SWITG mode at k
�Li�1.3 with �solid line+square� and without �solid
line+circles� the trapped electrons �from the global gyrokinetic model�.
�e�s0�=2.5, q�s0�=2.0, ŝ�s0�=1.0, �=1.0, and �n=0.1.
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SWITG mode at k
�Li�1.3 with �solid line+square� and without �solid
line+circles� the trapped electrons �from the global gyrokinetic model�.
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tonically for the second case. The maximum diffusivity shifts
toward lower k for both the cases with the trapped electrons
and without the trapped electrons. It is to be noted that the
values of the heat diffusivity for the case with the trapped
electrons have been scaled down, dividing the actual values
by 8 to show both the curves in the same scale. Thus, one
can conclude that the trapped electrons rise the heat diffusiv-
ity substantially. One important point to be noted is that there
is no peak specific to the k��Li of the SWITG mode, the
whole spectrum of the heat diffusivity tends to peak at lower
k��Li�0.5 despite the fact that the SWITG mode peaks at
around k��Li�1.5.

IV. CONCLUSION

In the present work, we have presented the features of
the SWITG mode in the presence of the trapped electrons
using a linear gyrokinetic model in the toroidal geometry,
that treats both the species, namely, ions and electrons fully
gyrokinetically, taking into account all the kinetic effects.
Comparison of parametric dependencies for the two cases of
the SWITG mode with and without the trapped electrons is
presented. In line with the global model, we also compare
the results from a local gyrokinetic model for the two cases,
with and without the trapped electrons. This is for the first
time where the SWITG mode is studied �1� in the presence
of trapped electrons and �2� in the frame of a global gyroki-
netic model. The major findings of the present work are the
following.

• The trapped electrons have strong effect on the SWITG
modes, rising the growth rate substantially. This is in con-
trast to the earlier conjecture that the trapped electrons may
not be important for the SWITG mode.

• Although defined as SWITG, the two dimensional mode
structure of the SWITG mode has been found to be quite
global occupying a considerable fraction of the tokamak
cross section for the chosen set of parameters. This estab-
lishes the necessity of a global model to study such a phe-
nomenon.

• The most important observation is that, in the presence of
the trapped electrons, the Ln /R window for the existence
of the SWITG mode gets widened. The toroidicity has
strong stabilizing effect on the SWITG mode in the ab-
sence of the trapped electrons. Inclusion of the trapped
electrons, however, has been found to make the mode
stronger against the stabilizing effect of the toroidicity.
Thus, the inference from this result is that the mode ac-
quires toroidal-like nature in the presence of the trapped
electrons in contrast to the slablike nature in the absence of
the trapped electrons. The increased fraction of the trapped
electrons with increased toroidicity is the main factor be-
hind this flipping of the mode from the slab nature to the
toroidal nature. The increased trapped fraction of the elec-
trons with toroidicity reduces the adiabatic response of the
electrons, which in turn enhances the formation of the
space charge leading to a higher growth rate of the mode
and hence the mode can withstand the effect of increased
toroidicity.

• The SWITG mode is an ITG driven mode in the higher
k��Li regime exhibiting a threshold in �i. The mode per-
sists even if the electrons are considered adiabatic. In the
absence of the trapped electrons the mode vanishes below
a critical �i. But, in the presence of the trapped electrons,
with the decreasing value of �i, the mode does not vanish,
rather it transforms itself from the dominantly ion mode to
the dominantly trapped electron mode.

• The growth rate increases for lower values of � but starts
saturating at higher values of it. In the presence of the
trapped electrons, the growth rate increases initially, but at
higher values of �, where the electrons become hotter than
the ions the growth rate falls and then saturates with the
mode frequency tending to move toward the electron dia-
magnetic direction.

• An estimation of the ion transport based on the mixing
length theory is done. The trapped electrons rise the heat
diffusivity significantly. It is found that the ion heat diffu-
sivity peaks at lower k��Li. No significant diffusivity is
observed at higher k
�Li where the SWITG mode is stron-
gest for both the cases with and without the trapped
electrons.

The study of the trapped electron coupled SWITG mode in-
cluding the effect of the equilibrium flow, electromagnetic
perturbation with B� and/or B�, Shafranov shift, and plasma
shaping is an important area of research. This will be ad-
dressed in a future work.
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