1,531 research outputs found
Bounded Verification with On-the-Fly Discrepancy Computation
Simulation-based verification algorithms can provide formal safety guarantees
for nonlinear and hybrid systems. The previous algorithms rely on user provided
model annotations called discrepancy function, which are crucial for computing
reachtubes from simulations. In this paper, we eliminate this requirement by
presenting an algorithm for computing piece-wise exponential discrepancy
functions. The algorithm relies on computing local convergence or divergence
rates of trajectories along a simulation using a coarse over-approximation of
the reach set and bounding the maximal eigenvalue of the Jacobian over this
over-approximation. The resulting discrepancy function preserves the soundness
and the relative completeness of the verification algorithm. We also provide a
coordinate transformation method to improve the local estimates for the
convergence or divergence rates in practical examples. We extend the method to
get the input-to-state discrepancy of nonlinear dynamical systems which can be
used for compositional analysis. Our experiments show that the approach is
effective in terms of running time for several benchmark problems, scales
reasonably to larger dimensional systems, and compares favorably with respect
to available tools for nonlinear models.Comment: 24 page
The ecological approach to multimodal system design
Following the ecological approach to visual perception, this paper presents a framework that emphasizes the role of vision on referring actions. In particular, affordances are utilized to explain gestures variability in a multimodal human-computer interaction. Such a proposal is consistent with empirical findings obtained in different simulation studies showing how referring gestures are determined by the mutuality of information coming from the target and the set of movements available to the speaker. A prototype that follows anthropomorphic perceptual principles to analyze gestures has been developed and tested in preliminary computational validations
Expression of a catalytically inactive mutant form of glutathione peroxidase 4 (Gpx4) confers a dominant-negative effect in male fertility.
The selenoenzyme Gpx4 is essential for early embryogenesis and cell viability for its unique function to prevent phospholipid oxidation. Recently, the cytosolic form of Gpx4 was identified as an upstream regulator of a novel form of non-apoptotic cell death, called ferroptosis, whereas the mitochondrial isoform of Gpx4 (mGpx4) was previously shown to be crucial for male fertility. Here, we generated and analyzed mice with targeted mutation of the active site selenocysteine (Sec) of Gpx4 (Gpx4_U46S). Mice homozygous for Gpx4_U46S died at the same embryonic stage (E7.5) as Gpx4-/- embryos as expected. Surprisingly, male mice heterozygous for Gpx4_U46S presented subfertility. Subfertility was manifested in a reduced number of litters from heterozygous breedings and an impairment of spermatozoa to fertilize oocytes in vitro. Morphologically, sperm isolated from heterozygous Gpx4_U46S mice revealed many structural abnormalities particularly in the spermatozoan midpiece due to improper oxidation and polymerization of sperm capsular proteins and malformation of the mitochondrial capsule surrounding and stabilizing sperm mitochondria. These findings are reminiscent of sperm isolated from selenium-deprived rodents or from mice specifically lacking mGpx4. Due to a strongly facilitated incorporation of Ser in the polypeptide chain as compared to Sec at the UGA codon, expression of the catalytically inactive Gpx4_U46S was found to be strongly increased. Since the stability of the mitochondrial capsule of mature spermatozoa depends on the moonlighting function of Gpx4 both as an enzyme oxidizing capsular protein thiols and being a structural protein, tightly controlled expression of functional Gpx4 emerges being key for full male fertility
Natural convection in asymmetric triangular enclosures heated from below
Triangular enclosures are typical configurations of attic spaces found in residential as well as industrial pitched-roof buildings. Natural convection in triangular rooftops has received considerable attention over the years, mainly on right-angled and isosceles enclosures. In this paper, a finite volume CFD package is employed to study the laminar air flow and temperature distribution in asymmetric rooftop-shaped triangular enclosures when heated isothermally from the base wall, for aspect ratios (AR) 0.2 64 AR 64 1.0, and Rayleigh number (Ra) values 8
7 105 64 Ra 64 5
7 107. The effects of Rayleigh number and pitch angle on the flow structure and temperature distributions within the enclosure are analysed. Results indicate that, at low pitch angle, the heat transfer between the cold inclined and the hot base walls is very
high, resulting in a multi-cellular flow structure. As the pitch angle increases, however, the number of cells reduces, and the total heat transfer rate progressively reduces, even if the
Rayleigh number, being based on the enclosure height, rapidly increases. Physical reasons for the above effect are inspected
Laboratory studies of lean combustion
The fundamental processes controlling lean combustion were observed for better understanding, with particular emphasis on the formation and measurement of gas-phase pollutants, the stability of the combustion process (blowout limits), methods of improving stability, and the application of probe and optical diagnostics for flow field characterization, temperature mapping, and composition measurements. The following areas of investigation are described in detail: (1) axisymmetric, opposed-reacting-jet-stabilized combustor studies; (2) stabilization through heat recirculation; (3) two dimensional combustor studies; and (4) spectroscopic methods. A departure from conventional combustor design to a premixed/prevaporized, lean combustion configuration is attractive for the control of oxides of nitrogen and smoke emissions, the promotion of uniform turbine inlet temperatures, and, possibly, the reduction of carbon monoxide and hydrocarbons at idle
A PIV investigation of the effect of disperse phase fraction on the turbulence characteristics of liquid-liquid mixing in a stirred tank
In this paper, utilising 2D angle-resolved particle image velocimetry (PIV), the flow field of a dilute aqueous-in-oil dispersion is experimentally studied in a stirring tank. Opacity during liquid–liquid mixing is eliminated by matching the refractive indices of both phases. Anisotropy of the turbulence flow field is analysed via the turbulent kinetic energy (TKE) and energy dissipation rate (EDR) obtained at different measuring angles. The influence of spatial resolution is compared and discussed. TKE and EDR are observed to increase with increment of dispersed phase fraction while a small range of disorder and fluctuation is observed in the impeller region. The effect of dispersed droplets should be attributed to the strengthened fluctuation of velocities and spatial differences. Further work concerning higher resolution and the disperse fraction is necessary
- …