60 research outputs found

    HAWC and Fermi-LAT Detection of Extended Emission from the Unidentified Source 2HWC J2006+341

    Full text link
    The discovery of the TeV point source 2HWC J2006+341 was reported in the second HAWC gamma-ray catalog. We present a follow-up study of this source here. The TeV emission is best described by an extended source with a soft spectrum. At GeV energies, an extended source is significantly detected in Fermi-LAT data. The matching locations, sizes and spectra suggest that both gamma-ray detections correspond to the same source. Different scenarios for the origin of the emission are considered and we rule out an association to the pulsar PSR J2004+3429 due to extreme energetics required, if located at a distance of 10.8 kpc.Comment: 12 pages, 2 figures. To appear in ApJ

    Multiple Galactic Sources with Emission Above 56 TeV Detected by HAWC

    Get PDF
    We present the first catalog of gamma-ray sources emitting above 56 and 100 TeV with data from the High Altitude Water Cherenkov (HAWC) Observatory, a wide field-of-view observatory capable of detecting gamma rays up to a few hundred TeV. Nine sources are observed above 56 TeV, all of which are likely Galactic in origin. Three sources continue emitting past 100 TeV, making this the highest-energy gamma-ray source catalog to date. We report the integral flux of each of these objects. We also report spectra for three highest-energy sources and discuss the possibility that they are PeVatrons.Comment: Accepted by Physical Review Letter

    Multimessenger Gamma-Ray and Neutrino Coincidence Alerts using HAWC and IceCube sub-threshold Data

    Full text link
    The High Altitude Water Cherenkov (HAWC) and IceCube observatories, through the Astrophysical Multimessenger Observatory Network (AMON) framework, have developed a multimessenger joint search for extragalactic astrophysical sources. This analysis looks for sources that emit both cosmic neutrinos and gamma rays that are produced in photo-hadronic or hadronic interactions. The AMON system is running continuously, receiving sub-threshold data (i.e. data that is not suited on its own to do astrophysical searches) from HAWC and IceCube, and combining them in real-time. We present here the analysis algorithm, as well as results from archival data collected between June 2015 and August 2018, with a total live-time of 3.0 years. During this period we found two coincident events that have a false alarm rate (FAR) of <1<1 coincidence per year, consistent with the background expectations. The real-time implementation of the analysis in the AMON system began on November 20th, 2019, and issues alerts to the community through the Gamma-ray Coordinates Network with a FAR threshold of <4<4 coincidences per year.Comment: 14 pages, 5 figures, 3 table

    Multimessenger NuEM Alerts with AMON

    Get PDF
    The Astrophysical Multimessenger Observatory Network (AMON), has developed a real-time multi-messenger alert system. The system performs coincidence analyses of datasets from gamma-ray and neutrino detectors, making the Neutrino-Electromagnetic (NuEM) alert channel. For these analyses, AMON takes advantage of sub-threshold events, i.e., events that by themselves are not significant in the individual detectors. The main purpose of this channel is to search for gamma-ray counterparts of neutrino events. We will describe the different analyses that make-up this channel and present a selection of recent results

    Combined dark matter searches towards dwarf spheroidal galaxies with Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS

    Get PDF
    Cosmological and astrophysical observations suggest that 85% of the total matter of the Universe is made of Dark Matter (DM). However, its nature remains one of the most challenging and fundamental open questions of particle physics. Assuming particle DM, this exotic form of matter cannot consist of Standard Model (SM) particles. Many models have been developed to attempt unraveling the nature of DM such as Weakly Interacting Massive Particles (WIMPs), the most favored particle candidates. WIMP annihilations and decay could produce SM particles which in turn hadronize and decay to give SM secondaries such as high energy \u1d6fe rays. In the framework of indirect DM search, observations of promising targets are used to search for signatures of DM annihilation. Among these, the dwarf spheroidal galaxies (dSphs) are commonly favored owing to their expected high DM content and negligible astrophysical background. In this work, we present the very first combination of 20 dSph observations, performed by the Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS collaborations in order to maximize the sensitivity of DM searches and improve the current results. We use a joint maximum likelihood approach combining each experiment’s individual analysis to derive more constraining upper limits on the WIMP DM self-annihilation cross-section as a function of DM particle mass. We present new DM constraints over the widest mass range ever reported, extending from 5 GeV to 100 TeV thanks to the combination of these five different \u1d6fe-ray instruments

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p&lt;0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p&lt;0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Mesenchymal tumours of the mediastinum—part II

    Get PDF
    corecore