2,084 research outputs found

    Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells

    Get PDF
    In photovoltaic devices, light harvesting (LH) and carrier collection have opposite relations with the thickness of the photoactive layer, which imposes a fundamental compromise for the power conversion efficiency (PCE). Unbalanced LH at different wavelengths further reduces the achievable PCE. Here, we report a novel approach to broadband balanced LH and panchromatic solar energy conversion using multiple-core–shell structured oxide-metal-oxide plasmonic nanoparticles. These nanoparticles feature tunable localized surface plasmon resonance frequencies and the required thermal stability during device fabrication. By simply blending the plasmonic nanoparticles with available photoactive materials, the broadband LH of practical photovoltaic devices can be significantly enhanced. We demonstrate a panchromatic dye-sensitized solar cell with an increased PCE from 8.3% to 10.8%, mainly through plasmon-enhanced photoabsorption in the otherwise less harvested region of solar spectrum. This general and simple strategy also highlights easy fabrication, and may benefit solar cells using other photoabsorbers or other types of solar-harvesting devices.Eni-MIT Energy Initiative Founding Member ProgramNational Science Foundation (U.S.) (ECCS Award 1028568)United States. Air Force Office of Scientific Research (AFOSR MURI Award FA9550-12-1-0488

    High resolution and dynamic imaging of biopersistence and bioreactivity of extra and intracellular MWNTs exposed to microglial cells

    Get PDF
    Multi-walled carbon nanotubes (MWNTs) are increasingly being developed both as neuro-therapeutic drug delivery systems to the brain and as neural scaffolds to drive tissue regeneration across lesion sites. MWNTs with different degrees of acid oxidation may have different bioreactivities and propensities to aggregate in the extracellular environment, and both individualised and aggregated MWNTs may be expected to be found in the brain. Before practical application, it is vital to understand how both aggregates and individual MWNTs will interact with local phagocytic immune cells, the microglia, and ultimately to determine their biopersistence in the brain. The processing of extra- and intracellular MWNTs (both pristine and when acid oxidised) by microglia was characterised across multiple length scales by correlating a range of dynamic, quantitative and multi-scale techniques, including: UV-vis spectroscopy, light microscopy, focussed ion beam scanning electron microscopy and transmission electron microscopy. Dynamic, live cell imaging revealed the ability of microglia to break apart and internalise micron-sized extracellular agglomerates of acid oxidised MWNTs, but not pristine MWNTs. The total amount of MWNTs internalised by, or strongly bound to, microglia was quantified as a function of time. Neither the significant uptake of oxidised MWNTs, nor the incomplete uptake of pristine MWNTs affected microglial viability, pro-inflammatory cytokine release or nitric oxide production. However, after 24 h exposure to pristine MWNTs, a significant increase in the production of reactive oxygen species was observed. Small aggregates and individualised oxidised MWNTs were present in the cytoplasm and vesicles, including within multilaminar bodies, after 72 h. Some evidence of morphological damage to oxidised MWNT structure was observed including highly disordered graphitic structures, suggesting possible biodegradation. This work demonstrates the utility of dynamic, quantitative and multi-scale techniques in understanding the different cellular processing routes of functionalised nanomaterials. This correlative approach has wide implications for assessing the biopersistence of MWNT aggregates elsewhere in the body, in particular their interaction with macrophages in the lung

    Differences in responses of platelets to fluid shear stress in patients with peripheral artery disease (PAD) and coronary artery disease (CAD).

    Get PDF
    Information on differences in platelet function between patients with peripheral arterial disease (PAD) and patients with coronary artery disease (CAD) is limited. We sought to examine the differences in the platelets response to shear stress in patients with PAD compared to those with CAD. Men with symptomatic PAD (ankle brachial index [ABI] \u3c 0.9; n = 29) were compared with similarly aged men with CAD (post coronary artery bypass grafting; n = 40) but without PAD. All participants were on aspirin, and none were on clopidogrel. We measured changes in shear-induced platelet aggregation (SIPA) and shear-induced P-selectin expression (SIPE) under fluid shear rates of 5000 and 10,000 s(-1)which are typically found in arterioles and stenosed arteries, respectively. Aggregation was also induced by a combined stimulation of collagen, fluid shear stress, and adenosine diphosphate (ADP) or epinephrine using a platelet function analyzer (PFA-100) as well as optical aggregometry (arachidonic acid, collagen and epinephrine). Analyses of covariance adjusted for age, aspirin dose, and statin use were used to estimate differences between the groups. Values of SIPA at fluid shear rates of 5000 and 10,000 s(-1) were significantly higher in the PAD group, while there were no differences between the PAD and CAD groups in SIPE at both fluid shear rates. However, baseline shear-induced P-selectin expression was higher in patients with PAD than CAD (mean fluorescence intensity [MFI] = 2.93 +/- 1.37 vs.1.94 +/- 0.67; p = 0.01), while the percentage increases in SIPA and SIPE at fluid shear rates of 5000 and 10,000 s(-1) were significantly higher in patients with CAD when compared to PAD (p \u3c 0.001 for all comparisons). Although there were several similarities in platelet function between men with PAD and men with CAD, significant differences in platelet responses to shear stress were observed in men with PAD when compared to those with CAD. Although the mechanism for these observed differences are not clear, we hypothesize that in vivo platelet activation in PAD patients may contribute to the differences and will need to be further investigated

    Association between fish consumption and risk of dementia: a new study from China and a systematic literature review and meta-analysis.

    Get PDF
    To assess the association of fish consumption with risk of dementia and its dose-response relationship, and investigate variations in the association among low-, middle- and high-income countries. A new community-based cross-sectional study and a systematic literature review.SettingsUrban and rural communities in China; population-based studies systematically searched from worldwide literature. Chinese adults aged ≥60 years in six provinces (n 6981) took part in a household health survey of dementia prevalence and risk factors. In addition, 33 964 participants from eleven published and eligible studies were included in the systematic review and meta-analysis. In the new study in China, 326 participants were diagnosed with dementia (4·7 %); those who consumed any amount of fish in the past two years v. those who consumed no fish had reduced risk of dementia (adjusted OR=0·73, 95 % CI 0·64, 0·99), but the dose-response relationship was not statistically significant. The meta-analysis of available data from the literature and the new study showed relative risk (RR) of dementia of 0·80 (95 % CI 0·74, 0·87) for people with fish consumption; the impact was similar among countries with different levels of income. Pooled dose-response data revealed RR (95 % CI) of 0·84 (0·72, 0·98), 0·78 (0·68, 0·90) and 0·77 (0·61, 0·98) in people with low, middle and high consumption of fish, respectively. Corresponding figures for Alzheimer's disease were 0·88 (0·74, 1·04), 0·79 (0·65, 0·96) and 0·67 (0·58, 0·78), respectively

    Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study

    Get PDF
    How individual differences in brain network organization track behavioral variability is a fundamental question in systems neuroscience. Recent work suggests that resting-state and task-state functional connectivity can predict specific traits at the individual level. However, most studies focus on single behavioral traits, thus not capturing broader relationships across behaviors. In a large sample of 1858 typically developing children from the Adolescent Brain Cognitive Development (ABCD) study, we show that predictive network features are distinct across the domains of cognitive performance, personality scores and mental health assessments. On the other hand, traits within each behavioral domain are predicted by similar network features. Predictive network features and models generalize to other behavioral measures within the same behavioral domain. Although tasks are known to modulate the functional connectome, predictive network features are similar between resting and task states. Overall, our findings reveal shared brain network features that account for individual variation within broad domains of behavior in childhood

    Functional divergence in the role of N-linked glycosylation in smoothened signaling

    Get PDF
    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice

    Discovery of Novel, Orally Bioavailable, Antileishmanial Compounds Using Phenotypic Screening

    Get PDF
    Leishmaniasis is a parasitic infection that afflicts approximately 12 million people worldwide. There are several limitations to the approved drug therapies for leishmaniasis, including moderate to severe toxicity, growing drug resistance, and the need for extended dosing. Moreover, miltefosine is currently the only orally available drug therapy for this infection. We addressed the pressing need for new therapies by pursuing a two-step phenotypic screen to discover novel, potent, and orally bioavailable antileishmanials. First, we conducted a high-throughput screen (HTS) of roughly 600,000 small molecules for growth inhibition against the promastigote form of the parasite life cycle using the nucleic acid binding dye SYBR Green I. This screen identified approximately 2,700 compounds that inhibited growth by over 65% at a single point concentration of 10 μM. We next used this 2700 compound focused library to identify compounds that were highly potent against the disease-causing intra-macrophage amastigote form and exhibited limited toxicity toward the host macrophages. This two-step screening strategy uncovered nine unique chemical scaffolds within our collection, including two previously described antileishmanials. We further profiled two of the novel compounds for in vitro absorption, distribution, metabolism, excretion, and in vivo pharmacokinetics. Both compounds proved orally bioavailable, affording plasma exposures above the half-maximal effective concentration (EC50) concentration for at least 12 hours. Both compounds were efficacious when administered orally in a murine model of cutaneous leishmaniasis. One of the two compounds exerted potent activity against trypanosomes, which are kinetoplastid parasites related to Leishmania species. Therefore, this compound could help control multiple parasitic diseases. The promising pharmacokinetic profile and significant in vivo efficacy observed from our HTS hits highlight the utility of our two-step phenotypic screening strategy and strongly suggest that medicinal chemistry optimization of these newly identified scaffolds will lead to promising candidates for an orally available anti-parasitic drug

    CD4\u3csup\u3e+\u3c/sup\u3e T cells in the lungs of acute sarcoidosis patients recognize an Aspergillus nidulans epitope

    Get PDF
    Löfgren’s syndrome (LS) is an acute form of sarcoidosis characterized by a genetic association with HLA-DRB1*03 (HLA-DR3) and an accumulation of CD4+ T cells of unknown specificity in the bronchoalveolar lavage (BAL). Here, we screened related LS-specific TCRs for antigen specificity and identified a peptide derived from NAD-dependent histone deacetylase hst4 (NDPD) of Aspergillus nidulans that stimulated these CD4+ T cells in an HLA-DR3–restricted manner. Using ELISPOT analysis, a greater number of IFN-γ– and IL-2–secreting T cells in the BAL of DR3+ LS subjects compared with DR3+ control subjects was observed in response to the NDPD peptide. Finally, increased IgG antibody responses to A. nidulans NDPD were detected in the serum of DR3+ LS subjects. Thus, our findings identify a ligand for CD4+ T cells derived from the lungs of LS patients and suggest a role of A. nidulans in the etiology of LS
    corecore