37 research outputs found

    Time-dependent metabolic disorders induced by short-term exposure to polystyrene microplastics in the Mediterranean mussel Mytilus galloprovincialis.

    Get PDF
    Abstract In the modern society, plastic has achieved a crucial status in a myriad of applications because of its favourable properties. Despite the societal benefits, plastic has become a growing global concern due to it is persistence and bioavailability as microplastics (MPs) to aquatic biota. In order to provide mechanistic insights into the early toxicity effects of MPs on aquatic invertebrates, a short-term (up to 72 h) exposure to 3 µm red polystyrene MPs (50 particles/mL) was conducted on marine mussels Mytilus galloprovincialis, selected as model organism for their ability to ingest MPs and their commercial relevance. The use of protonic Nuclear Magnetic Resonance (1H NMR)-based metabolomics, combined with chemometrics, enabled a comprehensive exploration at fixed exposure time-points (T24, T48, T72) of the impact of MPs accumulated in mussel digestive glands, chosen as the major site for pollutants storage and detoxification processes. In detail, 1H NMR metabolic fingerprints of MP-treated mussels were clearly separated from control and grouped for experimental time-points by a Principal Component Analysis (PCA). Numerous metabolites, including amino acids, osmolytes, metabolites involved in energy metabolism, and antioxidants, participating in various metabolic pathways significantly changed over time in MP-exposed mussel digestive glands related to control, reflecting also the fluctuations in MPs accumulation and pointing out the occurrence of disorders in amino acid metabolism, osmotic equilibrium, antioxidant defense system and energy metabolism. Overall, the present work provides the first insights into the early mechanisms of toxicity of polystyrene MPs in marine invertebrates

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    The internal male and female reproductive apparatus in Cixidia sikaniae D’Urso & Guglielmino, 1995 (Fulgoromorpha, Achilidae).

    Get PDF
    The morphology of the internal male and female reproductive apparatus in Cixidia sikaniae is described and illustrated. It is compared with the reproductive apparatus of other Achilidae taxa. In the male of C. sikaniae, the structure of the “ejaculatory duct” is peculiar. The presence of lateral ejaculatory ducts, known up to now exclusively in Cicadomorpha, is here described for the first time in a species belonging to the Fulgoromorpha. The phylogenetic value of some characters of the internal male and female reproductive apparatus within Fulgormorpha and between Fulgoromorpha and Cicadomorpha is discussed

    Responses of marine mussel Mytilus galloprovincialis (Bivalvia: Mytilidae) after infection with the pathogen Vibrio splendidus

    Get PDF
    International audienceBivalve molluscs possess effective cellular and humoral defence mechanisms against bacterial infection. Although the immune responses of mussels to challenge with pathogenic vibrios have been largely investigated, the effects at the site of injection at the tissue level have not been so far evaluated. To this aim, mussels Mytilus galloprovincialis were herein in vivo challenged with Vibrio splendidus to assess the responses induced in hemolymph and posterior adductor muscle (PAM), being the site of bacterial infection. The number of living intra-hemocyte bacteria increased after the first hour post-injection (p.i.), suggesting the occurrence of an intense phagocytosis, while clearance was observed within 24 h p.i. A recruitment of hemocytes at the injection site was found in mussel PAM, together with marked morphological changes in the volume of muscular fibers, with a recovery of muscle tissue organization after 48 h p.i. A concomitant impairment in the osmoregulatory processes were observed in PAM by an initial inhibition of aquaporins and increased immunopositivity of Na+/K+ ATPase ionic pump, strictly related to the histological alterations and hemocyte infiltration detected in PAM. Accordingly, an intense cell turnover activity was also recorded following the infection event. Overall, results indicated the hemolymph as the system responsible for the physiological adaptations in mussels to stressful factors, such as pathogenicity, for the maintenance of homeostasis and immune defence. Also, the osmotic balance and cell turnover can be used as objective diagnostic criteria to evaluate the physiological state of mussels following bacterial infection, which may be relevant in aquaculture and biomonitoring studies

    Time- and dose-dependent biological effects of a sub-chronic exposure to realistic doses of salicylic acid in the gills of mussel Mytilus galloprovincialis

    No full text
    Among nonsteroidal anti-inflammatory drugs (NSAIDs) commonly found in seawater and wastewater, salicylic acid (SA) represents one of the most persistent and hazardous compounds for aquatic organisms. This study was therefore designed to elucidate the biological effects of SA in mussel Mytilus galloprovincialis. During a sub-chronic exposure (12 days), mussels were exposed to five realistic concentrations of SA (C1: 0.05 μg/L; C2: 0.5 μg/L; C3: 5 μg/L; C4: 50 μg/L; C5: 100 μg/L) and gills, selected as the target organ, were collected at different time points (T3: 3 days; T5: 5 days; T12: 12 days). Exposure to SA induced no histological alterations in mussel gills, despite a relevant hemocyte infiltration was observed throughout the exposure as a defensive response to SA. Temporal modulation of glutathione S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) activities suggested the occurrence of antioxidant and detoxifying responses against SA exposure, while lipid peroxidation (LPO), except for a partial increase at T3, was prevented. Inhibition of the cholinergic system was also reported by reduced acetylcholinesterase (AChE) activity, mainly at T12. Overall, findings from this study contribute to enlarge the current knowledge on the cytotoxicity of SA, on non-target aquatic organisms, and might for the enhancement of new ecopharmacovigilance programs and optimization of the efficacy of wastewater treatment plants for mitigation of pharmaceutical pollution in coastal areas

    Effects of titanium dioxide nanoparticle exposure in Mytilus galloprovincialis gills and digestive gland

    No full text
    Despite the wide use of nanoscale materials in several fields, some aspects of the nanoparticle behavior have to be still investigated. In this work, we faced the aspect of environmental effects of increasing concentrations of TiO2NPs using the Mytilus galloprovincialis as an animal model and carrying out a multidisciplinary approach to better explain the results. Bioaccumulation suggested that the gills and digestive gland are the most sensitive organs to TiO2NP exposure. Histological observations have evidenced an altered tissue organization and a consistent infiltration of hemocytes, as a consequence of the immune system activation, even though an increase in lipid peroxidation is uncertain and DNA damage became relevant only at high exposure dose (10 mg/L) or for longer exposure time (96 h). However, the over expression of SOD1 mRNA strengthen the concept that the toxicity of TiO2NPs could occur indirectly by ROS production. TEM analysis showed the presence of multilamellar bodies, RER fragmentation, and cytoplasmic vacuolization within relevant presence of dense granules, residual bodies, and lipid inclusions. These findings support the evidence of an initial inflammatory response by the cells of the target organs leading to apoptosis. In conclusion, we can state that certainly the exposure to TiO2NPs has affected our animal model from cellular to molecular levels. Interestingly, the same responses are caused by lower TiO2NP concentration and longer exposure time as well as higher doses and shorter exposure. We do not know if some of the conditions detected are reversible, then further studies are required to clarify this aspect

    Waste Valorization via Hermetia Illucens to Produce Protein-Rich Biomass for Feed: Insight into the Critical Nutrient Taurine

    No full text
    Insects have been recognized as sustainable alternative sources of nutrients for food and feed. The Black Soldier Fly (BSF), Hermetia illucens, is a particularly promising species for its great potential in the waste valorization to produce, during the bioconversion process, high-value fat and proteins that currently represent a valuable source for fish feed. The present study aims to evaluate the efficiency to use substrate proteins in two different BSF developmental stages as sustainable biotechnological tools for vegetable waste management. We provide insights into the nutritional values of both V instar larvae and prepupae in terms of valuable amino acids with special focus on taurine, a crucial nutrient for fish. Moreover, we cloned four key genes from BSF involved in the taurine biosynthesis pathway, 2-aminoethanethiol dioxygenase (Hiado), cysteine dioxygenase (Hicdo), cysteine sulfonate decarboxylase (Hicsad), and glutamate decarboxylase (Higad). The gene expression analysis in larvae and prepupae by qPCR showed development-specific profiles suggesting they influence the taurine content during BSF development. These findings showed peculiar phenotypes in larvae and prepupae that can be selected for different biotechnological applications as sustainable source of relevant amino acids and taurine to support the increasing demand for animal feed and aquafeed in the next decades

    Biomarkers of environmental stress in gills of Pinna nobilis (Linnaeus 1758) from Balearic Island

    No full text
    In aquatic environments, bivalve molluscs are used as sentinel species for environmental biomonitoring. In this study Pinna nobilis specimens, the biggest Mediterranean bivalve, were collected in the Magaluf bay (Mallorca), a touristic location and in a pristine area of the Cabrera National Park as the control location. Histological and histochemical analysis in gills of specimens sampled from Magaluf exhibited evident tissue alterations with high presence of haemocytes. Lower acetylcholinesterase (AChE) activity and protein expression were also found in the gills of specimens collected from Magaluf compared with the control area. The determination of antioxidant enzyme activities, such as superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, showed a higher activities of these antioxidant enzymes and total glutathione content in samples from Magaluf bay than in Cabrera. In conclusion, the present study demonstrated that human activities result in morphological tissue alterations and a reduced AChE activity in gills of P. nobilis. Moreover, these stressful environmental conditions induced an adaptive response in P. nobilis as evidenced by increased antioxidant defences and a decreased AChE activity. CAPSULE: The human activities induce oxidative stress in P. nobilis as evidenced by increased antioxidant defences and a decreased acetylcholinesterase activity.Publicad
    corecore