15 research outputs found

    Maternal immune activation and adolescent alcohol exposure increase alcohol drinking and disrupt cortical-striatal-hippocampal oscillations in adult offspring

    Get PDF
    Maternal immune activation (MIA) is strongly associated with an increased risk of developing mental illness in adulthood, which often co-occurs with alcohol misuse. The current study aimed to begin to determine whether MIA, combined with adolescent alcohol exposure (AE), could be used as a model with which we could study the neurobiological mechanisms behind such co-occurring disorders. Pregnant Sprague-Dawley rats were treated with polyI:C or saline on gestational day 15. Half of the offspring were given continuous access to alcohol during adolescence, leading to four experimental groups: controls, MIA, AE, and Dual (MIA + AE). We then evaluated whether MIA and/or AE alter: (1) alcohol consumption; (2) locomotor behavior; and (3) cortical-striatal-hippocampal local field potentials (LFPs) in adult offspring. Dual rats, particularly females, drank significantly more alcohol in adulthood compared to all other groups. MIA led to reduced locomotor behavior in males only. Using machine learning to build predictive models from LFPs, we were able to differentiate Dual rats from control rats and AE rats in both sexes, and Dual rats from MIA rats in females. These data suggest that Dual “hits” (MIA + AE) increases substance use behavior and disrupts activity in reward-related circuits, and that this may be a valuable heuristic model we can use to study the neurobiological underpinnings of co-occurring disorders. Our future work aims to extend these findings to other addictive substances to enhance the translational relevance of this model, as well as determine whether amelioration of these circuit disruptions can reduce substance use behavior

    Sex differences in the ability of corticostriatal oscillations to predict rodent alcohol consumption

    Get PDF
    Background: Although male and female rats differ in their patterns of alcohol use, little is known regarding the neural circuit activity that underlies these differences in behavior. The current study used a machine learning approach to characterize sex differences in local field potential (LFP) oscillations that may relate to sex differences in alcohol-drinking behavior. Methods: LFP oscillations were recorded from the nucleus accumbens shell and the rodent medial prefrontal cortex of adult male and female Sprague-Dawley rats. Recordings occurred before rats were exposed to alcohol (n = 10/sex × 2 recordings/rat) and during sessions of limited access to alcohol (n = 5/sex × 5 recordings/rat). Oscillations were also recorded from each female rat in each phase of estrous prior to alcohol exposure. Using machine learning, we built predictive models with oscillation data to classify rats based on: (1) biological sex, (2) phase of estrous, and (3) alcohol intake levels. We evaluated model performance from real data by comparing it to the performance of models built and tested on permutations of the data. Results: Our data demonstrate that corticostriatal oscillations were able to predict alcohol intake levels in males (p \u3c 0.01), but not in females (p = 0.45). The accuracies of models predicting biological sex and phase of estrous were related to fluctuations observed in alcohol drinking levels; females in diestrus drank more alcohol than males (p = 0.052), and the male vs. diestrus female model had the highest accuracy (71.01%) compared to chance estimates. Conversely, females in estrus drank very similar amounts of alcohol to males (p = 0.702), and the male vs. estrus female model had the lowest accuracy (56.14%) compared to chance estimates. Conclusions: The current data demonstrate that oscillations recorded from corticostriatal circuits contain significant information regarding alcohol drinking in males, but not alcohol drinking in females. Future work will focus on identifying where to record LFP oscillations in order to predict alcohol drinking in females, which may help elucidate sex-specific neural targets for future therapeutic development

    The Impact of Adolescent Alcohol Exposure on Nicotine Behavioral Sensitization in the Adult Male Neonatal Ventral Hippocampal Lesion Rat

    Get PDF
    Nicotine and alcohol use is highly prevalent among patients with serious mental illness, including those with schizophrenia (SCZ), and this co-occurrence can lead to a worsening of medical and psychiatric morbidity. While the mechanistic drivers of co-occurring SCZ, nicotine use and alcohol use are unknown, emerging evidence suggests that the use of drugs during adolescence may increase the probability of developing psychiatric disorders. The current study used the neonatal ventral hippocampal lesion (NVHL) rat model of SCZ, which has previously been shown to have enhanced nicotine behavioral sensitization and, following adolescent alcohol, increased alcohol consumption. Given how commonly alcohol is used by adolescents that develop SCZ, we used the NVHL rat to determine how exposure to adolescent alcohol impacts the development of nicotine behavioral sensitization in adulthood. Male Sprague-Dawley rats underwent the NVHL surgery or a sham (control) surgery and subsequently, half of each group was allowed to drink alcohol during adolescence. Nicotine behavioral sensitization was assessed in adulthood with rats receiving subcutaneous injections of nicotine (0.5 mg/kg) each day for 3 weeks followed by a nicotine challenge session 2 weeks later. We demonstrate that all groups of rats became sensitized to nicotine and there were no NVHL-specific increases in nicotine behavioral sensitization. We also found that NVHL rats appeared to develop sensitization to the nicotine paired context and that adolescent alcohol exposure blocked this context sensitization. The current findings suggest that exposure to alcohol during adolescence can influence behaviors that manifest in the adult NVHL rat (i.e., context sensitization). Interestingly, nicotine behavioral sensitization levels were not altered in the NVHL groups regardless of adolescent alcohol exposure in contrast to prior reports

    The Lateral Habenula Directs Coping Styles Under Conditions of Stress via Recruitment of the Endocannabinoid System

    No full text
    The ability to effectively cope with stress is a critical determinant of disease susceptibility. The lateral habenula (LHb) and the endocannabinoid (ECB) system have independently been shown to be involved in the selection of stress coping strategies, yet the role of ECB signaling in the LHb remains unknown.Using a battery of complementary techniques in rats, we examined the localization of type-1 cannabinoid receptors (CB1Rs) and assessed the behavioral and neuroendocrine effects of intra-LHb CB1R manipulations. We further tested the extent to which the ECB system in the LHb is impacted following chronic unpredictable stress or social defeat stress, and whether manipulation of LHb CB1Rs can bias coping strategies in rats with a history of chronic stress.Electron microscopy studies revealed CB1R expression on presynaptic axon terminals, postsynaptic membranes, mitochondria, and glial processes in the rat LHb. In vivo microdialysis experiments indicated that acute stress increased the amount of 2-arachidonoylglycerol in the LHb, while intra-LHb CB1R blockade increased basal corticosterone, augmented proactive coping strategies, and reduced anxiety-like behavior. Basal LHb 2-arachidonoylglycerol content was similarly elevated in rats that were subjected to chronic unpredictable stress or social defeat stress and positively correlated with adrenal weight. Finally, intra-LHb CB1R blockade increased proactive behaviors in response to a novel conspecific, increasing approach behaviors irrespective of stress history and decreasing the latency to be attacked during an agonistic encounter.Alterations in LHb ECB signaling may be relevant for development of stress-related pathologies in which LHb dysfunction and stress-coping impairments are hallmark symptoms
    corecore