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ARTICLE OPEN

Maternal immune activation and adolescent alcohol exposure
increase alcohol drinking and disrupt cortical-striatal-
hippocampal oscillations in adult offspring
Angela M. Henricks 1✉, Emily D. K. Sullivan2,4, Lucas L. Dwiel2,4, Judy Y. Li 2, Diana J. Wallin2, Jibran Y. Khokhar 3 and
Wilder T. Doucette2

© The Author(s) 2022

Maternal immune activation (MIA) is strongly associated with an increased risk of developing mental illness in adulthood, which
often co-occurs with alcohol misuse. The current study aimed to begin to determine whether MIA, combined with adolescent
alcohol exposure (AE), could be used as a model with which we could study the neurobiological mechanisms behind such co-
occurring disorders. Pregnant Sprague-Dawley rats were treated with polyI:C or saline on gestational day 15. Half of the offspring
were given continuous access to alcohol during adolescence, leading to four experimental groups: controls, MIA, AE, and Dual
(MIA+ AE). We then evaluated whether MIA and/or AE alter: (1) alcohol consumption; (2) locomotor behavior; and (3) cortical-
striatal-hippocampal local field potentials (LFPs) in adult offspring. Dual rats, particularly females, drank significantly more alcohol in
adulthood compared to all other groups. MIA led to reduced locomotor behavior in males only. Using machine learning to build
predictive models from LFPs, we were able to differentiate Dual rats from control rats and AE rats in both sexes, and Dual rats from
MIA rats in females. These data suggest that Dual “hits” (MIA+ AE) increases substance use behavior and disrupts activity in reward-
related circuits, and that this may be a valuable heuristic model we can use to study the neurobiological underpinnings of co-
occurring disorders. Our future work aims to extend these findings to other addictive substances to enhance the translational
relevance of this model, as well as determine whether amelioration of these circuit disruptions can reduce substance use behavior.

Translational Psychiatry          (2022) 12:288 ; https://doi.org/10.1038/s41398-022-02065-y

INTRODUCTION
Approximately 9.5 million adults in the United States are living
with both a substance use disorder (SUD) and mental illness [1],
typically referred to as “co-occurring disorders.” Alcohol is one of
the most commonly misused substances in this population, with
approximately 32% of individuals with mental illness engage in
problematic drinking [1]. Individuals with co-occurring disorders
are less responsive to treatment and experience higher rates of
relapse, homelessness, incarceration, and suicide compared to
individuals with a single disorder [2]. One reason for this
difference in morbidity is because co-occurring disorders are
notoriously difficult to treat and require integrative care, and the
available pharmacotherapies are largely ineffective [3, 4]. A major
barrier to the development of better therapies is that there is still
much to learn regarding the neurobiological mechanisms under-
lying these co-occurring disorders [5, 6].
From a neurobiological perspective, it has been consistently

demonstrated that the brain is highly susceptible to the harmful
effects of environmental stressors in the early stages of development.
One major environmental risk factor is prenatal exposure to infection
[7–10]. Systemic viral infections, like influenza or rubella, in pregnant
women have been repeatedly associated with an increased incidence
of psychosis- and mood-related disorders in offspring (e.g.,

schizophrenia, bipolar disorder, and depression) [8, 9], and these
mental illnesses are often comorbid with alcohol misuse [1]. However,
since not all individuals exposed to infection in the prenatal
environment develop a mental illness, it is likely that prenatal
stressors combined with a “second-hit” during other critical periods of
development (e.g., adolescence) further increase the probability of
developing a mental illness in adulthood [8–10]. There is evidence for
this “two-hit” model, reviewed elsewhere [9, 10], indicating that a
possible adolescent stressor is alcohol and/or drug use. Using
maternal immune activation (MIA) to mimic prenatal exposure to
infection in rodents, we tested the hypothesis that MIA combined
with adolescent alcohol exposure (AE) might serve as a useful
heuristic with which we can begin to study co-occurring disorders.
We further hypothesized that MIA and/or AE would disrupt neural

circuit activity in regions that regulate reward-related behaviors.
Cortical, striatal, and hippocampal circuits are all implicated in alcohol
misuse [11]. Specifically, activity in the medial prefrontal cortex
(mPFC) and nucleus accumbens (NAc) drive responses to rewarding
substances like alcohol [11, 12], while the PFC and hippocampus
appear particularly important in associative learning and coordinating
responses to drug cues [12, 13]. Disruptions in these circuits are also
seen in mental illness. Our previous clinical work has demonstrated
that individuals with schizophrenia and co-occurring substance use
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disorder have reduced functional connectivity between the NAc and
mPFC [14]. There is also a multitude of data showing structural and
functional changes to the hippocampus in schizophrenia and bipolar
disorder, which might be related to symptoms involving learning and
regulating emotions [13, 15]. Others have also shown that MIA
offspring have reduced connectivity between the mPFC and the CA1
of the hippocampus which correlates with abnormal prepulse
inhibition, a well-characterized symptom of MIA exposure consistent
with the sensorimotor gating deficits observed in schizophrenia and
bipolar disorder [16, 17]. We therefore hypothesize that if these
regions contain information regarding alcohol drinking in MIA rats,
they may also serve as therapeutic targets in future research [18].
The current set of experiments investigated the impact of MIA,

AE, and MIA+ AE (Dual) on alcohol drinking behavior and local
field potentials (LFPs) recorded from the mPFC, NAc shell, and CA1
in male and female rats. LFPs represent aggregated electrical
signals from neurons that appear to largely reflect synchronized
synaptic inputs, and are thus useful for understanding how
information flows through neural circuits [19]. LFPs are also a
translationally-relevant method to measure activity within and
connectivity between brain regions in freely behaving animals
[20]. We, therefore, aimed to determine whether: (1) MIA and/or
AE alters alcohol consumption; (2) MIA and/or AE alters locomotor
behavior; and (3) cortical-striatal-hippocampal LFPs could predict
MIA and/or AE exposure.

MATERIALS AND METHODS
General experimental design
Experiment 1 allowed us to evaluate the impact of MIA and AE on
adulthood alcohol drinking behavior. Male and female offspring were
divided into four groups: control, MIA, AE, or Dual. Since MIA rats have
shown both hypo- and hyperactive locomotor behavior in previous studies
[21–23], we also tested rats’ locomotor response to a novel environment in
adulthood to verify that our procedures caused a known behavioral
phenotype of MIA. Rats were then trained to drink alcohol in their home
cage, as described below.
Experiment 2 allowed us to evaluate the impact of MIA and AE on cortical-

striatal-hippocampal oscillations. A separate group of adult male and female
control, MIA, AE, or Dual rats were implanted with electrodes targeting the
prelimbic (PL) and infralimbic (IL) mPFC, NAc shell, and CA1. Following
recovery, each rat underwent two, 30-minute recording sessions to measure
baseline neural circuit activity, and we used an unbiased machine-learning
approach to determine whether cortical-striatal-hippocampal LFPs could
predict MIA and/or AE exposure. See Fig. 1 for the experimental timelines.

Animals
Timed-pregnant Sprague-Dawley rats were ordered to arrive on a
gestational day (GD) 8 (Charles River), and allowed to acclimate to the
housing environment for 7 days prior to experimentation. Dams were
housed individually on a reverse 12-hour light cycle with ad libitum access
to food and water. Pups were weaned on postnatal day (P) 21 and housed
in same-sex pairs until P 28, after which all animals were individually
housed. All experiments were carried out in accordance with the National
Institute of Health Guide for the Care and Use of Laboratory Animals (NIH
Publications No. 80–23) and were approved by the Institutional Animal
Care and Use Committee of Dartmouth College.

Maternal immune activation
Pregnant dams were randomly assigned to receive polyinosinic:polycy-
tidylic acid [polyI:C, 4 mg/kg, IV] (Tocris Bioscience) or saline (1mL/kg, IV)
on GD 15. PolyI:C is a synthetic analog of double-stranded RNA that leads
to a heightened immune response in rats [10]. Dams’ body weight, food,
and water intake were monitored at −24, 0, 24, and 48 hours from the
injection. Blood was collected 2 hours after injection to measure the pro-
inflammatory cytokines IL6 and TNFα. Both male and female pups were
allowed to develop normally and were weaned on P 21.

Cytokine ELISA
Serum samples from dams were analyzed via enzyme-linked immunosor-
bent assay (ELISA) for IL6 and TNFα (Thermo Fisher Scientific) following the
manufacturer’s recommendations.

Adolescent alcohol exposure
AE and Dual rats were allowed to drink 10% alcohol (v/v) in their home
cage from P 28–42, consistent with our previous work [24]. Rats were given
24 hour access to alcohol and water, and the weight of each bottle was
measured daily. The position of each bottle was rotated daily to avoid
positional preference, and rats were weighed weekly to calculate weight-
adjusted alcohol consumption (g/kg).

Locomotor response to a novel environment
On approximately P 70, rats were allowed to explore a novel open field
(60 cm × 60 cm × 33 cm) in the dark for 25minutes. Infrared cameras
recorded the behavior, which was analyzed with EthoVision behavioral
tracking software (Noldus Information Technology). Total distance traveled,
frequency in the center zone, and time in the center zone was calculated
and used for data analyses.

Adulthood alcohol drinking
On approximately P 80, rats were trained to drink 10% alcohol (v/v) in their
home cage for 90min/day, 5 days/week using a sucrose fade technique
like that described previously [25]. Briefly, rats were allowed to drink 5%
sucrose in water during week 1, then 5% sucrose+ 10% alcohol during
week 2, then 2.5% sucrose+ 10% alcohol during week 3, then only 10%
alcohol in water for three more weeks. Rats were weighed weekly to assess
the amount of alcohol consumed in g/kg.

Surgery
Electrodes were designed and constructed in-house and were similar to
those used in our previous publications [26–28]. Animals were anesthe-
tized with isoflurane gas (4% induction, 2% maintenance) and mounted in
a stereotaxic frame. Custom electrodes were implanted bilaterally
targeting the PL mPFC (from bregma: DV −4mm; AP +3.4 mm; ML
±0.75mm), IL mPFC (from bregma: DV −5mm; AP +3.4 mm; ML
±0.75mm), NAc shell (from bregma: DV −8mm; AP +1.2 mm; ML
±1.0mm), and CA1 of the hippocampus (from bregma: DV −2.5 mm; AP
−3.8 mm; ML ±2.5 mm). Four stainless steel skull screws were placed
around the electrode site and dental cement (Dentsply) was applied to
secure the electrodes in place. Rats were allowed to recover for at least
7 days before any experimentation began.

Histology. At the end of the experiments, rats were euthanized via CO2

gas inhalation. Brains were harvested from rats implanted with electrodes
and flash frozen in 2-methylbutane on dry ice. The tissue was stored at
−20 °C prior to being sectioned at 50 μm using a Leica CM1850 cryostat
and stained with thionin. Electrode placement was verified using a Leica
A60 microscope. Out of the 84 rats implanted, we were unable to check

Fig. 1 Experimental timelines. Dams were exposed to polyI:C or
saline on gestational day (GD) 15. Half of the offspring were then
exposed to continuous alcohol from postnatal day (P) 28-42.
Behavioral and electrophysiological experiments began in adult-
hood (>P 70).
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complete histology on 8 brains due to tissue damage that occurred during
the collection process: 3 control, 1 MIA, 2 AE, and 2 Dual brains. The LFP
data for these rats were excluded from analyses. Figure 5A depicts
representations of electrode placements.

Local field potential recordings
LFPs were recorded from each awake, freely behaving rat in a standard
operant chamber (MedAssociates). Rats were allowed to move about the
chamber, but there was no task involved and rats did not have any prior
experience in the chambers. Data from each recording were analyzed
using frequency ranges from the rodent literature (δ= 1–4 Hz, θ= 5–10 Hz,
α= 11–14 Hz, β= 15–30 Hz, low γ= 45–65 Hz, and high γ= 70–90 Hz). LFP
signal processing to characterize the power spectral densities (PSD) within,
and coherence between brain regions, for each rat was calculated using
custom code written for Matlab, as we have previously published [26–28].

Statistical analysis
Dam analysis. Pro-inflammatory cytokine levels were analyzed using
independent sample t tests comparing Control and MIA dams. A repeated
measures ANOVA was used to compare behavioral and physiological
responses to polyI:C using time as the within-subject variable and group
(Control or MIA) as the between-subject variable.

Behavioral analysis in offspring. The average g/kg of alcohol consumed in
adolescence and adulthood was analyzed using a repeated measures
ANOVA, with time as the within-subject variable and MIA, AE, and sex as
the between-subject variables. The average total distance traveled,
frequency in the center, and time in the center was calculated for the
entire locomotor response to the novelty session. A three-way ANOVA
analyzed the impact of MIA, AE, and sex. All behavioral data were analyzed
with dam number as a covariate to control for any possible litter effects.
Based on our previous findings [24], we estimated that 8–12 animals/
group/sex would yield sufficient power to determine whether MIA and/or
AE impacted alcohol consumption in adulthood. Researchers were not
blinded to the experimental conditions.

LFP oscillation analysis. Similar to our previous publications [26–28] we built
general linear models to classify rats based on group assignment (i.e., control,
MIA, AE, or Dual) using LFP oscillation data. Since each rat underwent two

baseline recording sessions, we used data from both sessions to build
baseline models. Data were then calculated in 5 second bins, with each bin
representing one sample in the models. Using a “leave-one-out” (LOO)
approach, models were then trained on all data minus one animal from each
group, and then the model was tested on the left-out animal. To account for
overrepresenting animals with more “clean” data (i.e., low noise) than other
animals with less “clean” data (i.e., high noise), each model used only
1200 samples from each animal. All possible combinations of LOO were
analyzed, and each LOO combination was run 100 times to account for sub-
sampling. Model performance is reported as the mean area under the receiver
operating characteristic curve (AUC) ± 95% confidence interval. The relevant
code used to create these models is available on Github: https://github.com/
lucasdwi/code/blob/greenlab/notes/angelaMIANotes.m.
Because we used multiple recording sessions from the same animal and

5-second bins as samples, we also evaluated models built on permutations of
binary rat groupings (“animal detector”), as previously described [28]. This was
done by keeping the LFP oscillation data together with the rat it was recorded
from, but then shuffling the group assignment of each rat’s set of recordings.
The “animal detector” test thus allowed us to determine how much of our
model accuracy was simply due to the ability of the algorithm to predict
individual differences in oscillations not related to group assignment. We then
compared the model performance of the real data to the “animal detector.” If
the real model performed with greater accuracy than the “animal detector,” it
indicated that information existed in the LFP signal regarding group
assignment. We then implemented exhaustive single-feature regressions
using each LFP predictor to determine the relative information content of
each neural feature. Figure 5B depicts the model building approach.

RESULTS
The Impact of PolyI:C on dams
Two-way ANOVAs showed that polyI:C did not influence the total
number of days in gestation, the number of pups born, or the M/F
pup ratio (all p values > 0.05; n= 9/group; Fig. 2A, B). However,
polyI:C significantly reduced food intake compared to control
dams [F(1,16) = 13.32, p= 0.002; n= 9/group; Fig. 2C]. There was
also a significant time*group interaction for water intake
[F(2,28)= 4.60, p= 0.02; n= 8/group; Fig. 2D], and weight gain
[F(2,32)= 12.69, p < 0.001; n= 9/group; Fig. 2E], with post-hoc

Fig. 2 The impact if polyI:C on dams. A PolyI:C did not impact the number of days of gestation compared to saline-treated dams (controls)
(p > 0.05; n= 9/group). B PolyI:C did not impact the number of pups born or M/F pup ratio compared to control dams (p > 0.05; n= 9/group).
C Dams treated with polyI:C ate less food than control dams overall (p= 0.002; n= 9/group). D Dams treated with polyI:C drank less water
than control dams 24 hours after injection (p < 0.05; n= 8/group). E PolyI:C caused a reduction in body weight 24 hours after injection, but an
increase 48 hours after injection, compared to control dams (p < 0.05; n= 9/group). F The impact of polyI:C on IL6 and TNFα concentration
2 hours post-injection. Each dot represents an individual dam. PolyI:C significantly enhanced TNFα levels (p= 0.006; n= 4–5/group), but not
IL6 levels (p= 0.08; n= 4–5/group).
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tests showing that polyI:C dams drank less water and gained less
weight than control dams for the first 24 hours post injection
(p’s < 0.05). PolyI:C significantly enhanced circulating TNFα
[t(7)=−3.89, p= 0.006], but not IL6 [t(4.04)=−2.31, p= 0.08]
levels, two hours after injection (n= 4–5/group; Fig. 2F).

Experiment 1: The impact of MIA and AE on behavior
Alcohol consumption in adolescence. A repeated measures ANOVA
revealed a significant effect of session [F(13, 442)= 2.26, p= 0.007,
n2p= 0.06], a session*MIA interaction [F(13, 442)= 2.61, p= 0.002,
n2p= 0.07], and a session*sex interaction [F(13, 442)= 2.83,
p= 0.001, n2p= 0.08; n= 9–11/group/sex from four dams). Post-
hoc analyses revealed a significant effect of MIA on drinking only
during session 2 (p < 0.05), but did not reveal any sessions in which
there was a significant difference in alcohol consumed between male
and female rats (all p values >0.05; Fig. 3A).

Alcohol consumption in adulthood. See the supplemental
materials for the sucrose fade data. For 10% alcohol alone, a
repeated measures ANOVA revealed a significant effect of week
[F(2, 134)= 5.57, p= 0.005, n2p= 0.08], a significant effect of
sex [F(1, 67)= 19.02, p < 0.001, n2p= 0.22], a significant
week*AE interaction [F(2, 134)= 4.64, p= 0.01, n2p= 0.07], a
significant AE*sex interaction [F(1, 67)= 4.19, p= 0.045,
n2p= 0.06], a significant MIA*AE interaction [F(1, 67)= 5.36,
p= 0.02, n2p= 0.07], and a significant week*MIA*AE interaction
[F(2, 134)= 4.22, p= 0.02, n2p= 0.06; n= 8–11/group/sex from
12 dams]. Post-hoc analyses revealed that: (1) across weeks,
alcohol consumption increased in all groups; (2) Dual rats drank
significantly more alcohol than Control, MIA, and AE rats in
weeks 2 and 3 (with a trend for week 1, p= 0.059); and (3)
female rats drank more alcohol overall compared to male rats
(all p values < 0.05; Fig. 3B).

Locomotor response to novelty in adulthood. A three-way ANOVA
revealed a significant effect of sex [F(1, 72)= 32.50, p < 0.001,
n2p= 0.31], MIA [F(1, 72)= 11.53, p= .001, n2p= 0.14], dam
number [F(1, 72)= 4.69, p= 0.03, n2p= 0.06], and a sex*MIA*AE
interaction [F(1, 72)= 4.86, p= 0.03, n2p= 0.06; n= 9–11/group/sex
from eight dams). Post-hoc analyses revealed that male MIA and
Dual rats moved less than Control and AE rats (p < 0.05), and female
rats overall movedmore than male rats (p < 0.05; Fig. 4A). There was
also a significant effect of sex for time in the center [F(1, 72)= 5.06,

p= 0.03, n2p= 0.07], with post-hoc analyses revealing that males
overall spent more time in the center zone compared to females
(p < 0.05). However, there were no other significant effects for
center entries or time spent in the center zone (Fig. 4B, C).

Experiment 2: The impact of MIA and AE on LFP oscillations
In order to identify how MIA and AE impact cortical-striatal-
hippocampal LFP oscillations, we built predictive models compar-
ing Duals to control, MIA, and AE groups individually. LFP data
were analyzed for each sex separately. Because the Dual rats
showed significant increases in alcohol drinking compared to
other groups, we used Dual rats as the comparison group. Using
LFPs to predict Dual rats from Control rats, models for each sex
outperformed the “animal detector” (Males real mean
accuracy= 0.61 ± 0.04; Females real mean accuracy: 0.66 ± 0.07;
n= 5–10/group/sex from seven dams; Fig. 5C). Further, models
were able to predict Dual vs. MIA rats in females (real mean
accuracy= 0.66 ± 0.07; n= 5–13/group from six dams), but not in
males (real mean accuracy= 0.50 ± 0.05; n= 10–12/group from
seven dams; Fig. 5D), and Dual vs. AE rats in both sexes (Males real
mean accuracy= 0.59 ± 0.06; Females real mean accuracy:
0.58 ± 0.11; n= 5–10/group/sex from four dams; Fig. 5E). The
“animal detector” models estimated chance predictions in all
cases, with a mean accuracy ranging from 0.49 ± 0.03–0.53 ± 0.05
(Fig. 5C–E). Representative raw LFPs, a PSD, and a coherence plot
can be found in the supplementary materials.
Based on single-feature regression analyses, Table 1 shows the

five neural features containing the most information (i.e., with the
highest individual prediction accuracies) for each of the models
that performed above chance estimates. It is interesting to note
that most of the predictive individual features are power features.

DISCUSSION
MIA is a relatively well-characterized heuristic model in terms of
the behavioral similarities to mental illnesses like schizophrenia,
bipolar disorder, and depression [8]; MIA leads to maladaptive
changes in locomotor behavior, affect, cognitive flexibility,
sensorimotor gating, and social interactions [9, 10]. However,
even though mental illness often co-occurs with substance
misuse, the current set of experiments is one of the very few
studies (discussed below) to test whether MIA rats might be more
prone to addiction-like behaviors, and are thus a significant

Fig. 3 The impact of MIA and AE on offspring drinking behavior. A Average alcohol consumed (g/kg) during adolescence (P 28–42) in male
and female offspring from dams exposed to polyI:C (Dual) or saline (AE). There were no significant differences between groups, except during
session 2 (p > 0.05; n= 9–11/group/sex from 4 dams). B Average alcohol consumed (g/kg) in a limited access paradigm across 3 weeks in adult
control, MIA, AE, and dual rats. Drinking rates increased across time in all groups (p= 0.05), but Dual offspring drank significantly more alcohol
than all other groups during weeks 2 and 3 (p < 0.05; n= 8–11/group/sex from 12 dams). Female rats drank more alcohol than males (p < 0.05).
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addition to the literature. Our data specifically indicate that MIA or
AE alone does not impact alcohol drinking behavior, but that
“two-hits” (e.g., MIA+ AE; Dual) leads to enhanced alcohol
consumption in adult offspring, particularly in females. Further,
predictive models using cortical-striatal-hippocampal LFPs can
differentiate Dual rats from controls and AE rats in both sexes, and
Dual rats from MIA rats in females. These data suggest that there is
information in these circuits regarding MIA and AE, and that
activity in these regions is disrupted by these environmental
stressors. Since cortical-striatal and cortical-hippocampal circuits
have been previously shown to control responding to drugs and
drug cues [11–13], we hypothesize that dysregulation in these

circuits may underlie the increased drinking we see in Dual rats,
and that amelioration of these circuit disruptions might reduce
alcohol consumption, which is the focus of our ongoing research.
In the current study, MIA paired with AE was necessary to

increase alcohol consumption in adulthood. While others have
shown that AE alone increases alcohol drinking [29, 30], the results
are inconsistent [31–33] and likely depend on the exposure time-
point and regimen (e.g., continuous vs. intermittent). Further,
while there are data to suggest that MIA alone alters reward
behaviors in rodents, this work has almost entirely focuses on
motor responses to dopamine agonists in male offspring [34–36].
Since dopamine activity is both decreased and increased,

Fig. 4 The impact of MIA and AE on offspring locomotor behavior. A MIA reduced total distance traveled in locomotor response to novelty
task in male rats (p < 0.05). Female rats overall moved more than male rats (p < 0.05; n= 9–11/group/sex from 8 dams). B MIA and/or AE did
not impact the number of center entries; or C the time spent in the center (p > 0.05). Overall, female rats spent less time in the center zone
compared to male rats (p < 0.05).

Fig. 5 Cortical-striatal-hippocampal LFPs predict MIA and/or AE exposure. A Histologic representation of lesions caused by electrode
cannula in the mPFC (+3.4 mm from bregma), NAcSh (+1.2 mm from bregma), and CA1 (−3.8 mm from bregma). Electrode wires extended
1mm from the end of the cannula for the NAcSh, CA1, and PL, and 2mm for the IL. B Schematic representation of the baseline model
building. C LFPs predicted Dual rats from control rats better than the “animal detector” in both males and females (5–10/group/sex from 7
dams). D LFPs predicted Dual rats from MIA rats better than the “animal detector” in females, but not in males (n= 5–13/group from 6 dams).
E LFPs predicted Dual rats from AE rats better than the “animal detector” in both males and females (n= 5–10/group/sex from four dams).
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depending on brain region, in MIA rats [37, 38], it is unclear if
these previous data represent an “addiction” phenotype, or are
simply reflective of the locomotor deficits induced by dopamine
dysfunction. A more recent set of studies indicate that MIA leads
to enhanced dopamine firing in the VTA in male offspring [38].
Increased VTA dopamine firing has been previously demonstrated
in male alcohol-preferring (P) rats, and rodents experiencing
alcohol withdrawal [39], suggesting that MIA might lead to VTA
dopamine changes that enhance the risk of alcohol misuse, at
least in males. However, the current study did not see any
increases in alcohol drinking in rats exposed to MIA alone. We,
therefore, hypothesize that AE in this study impacted neurode-
velopment at a critical time-point that synergistically interacted
with MIA to produce increased adulthood drinking. These data
support the hypothesis that “two-hits,” one in very early life and
one in adolescence, are necessary to produce a phenotype that is
similar to the clinical presentation of co-occurring disorders [9, 10].
Our future studies aim to advance this line of work by testing
whether MIA and/or AE rats are willing to work harder for alcohol
and other drugs than control rats in an operant setting.
It is important to highlight that we observed significant sex

differences in these studies that may help us better understand the
complex sex differences in clinical presentations of co-occurring
disorders. Schizophrenia is more common in men, especially earlier
in life, and men with schizophrenia are more likely to have a co-
occurring SUD [40]. On the other hand, rates of alcohol misuse are
increasing among women, and women experience more psychiatric
issues related to alcohol misuse than men [41, 42]. Our works aims to
begin to disentangle the neurobiological contributions to these sex
differences. For instance, we replicated our previous studies showing
that female rats drink more alcohol in general compared to males
[25, 28], and also add that females might be more susceptible to the
impact of the Dual hit on drinking behavior. Further, cortical-striatal-
hippocampal oscillations were not predictive of Dual vs. MIA rats in
males, as it was in females. These data suggest that the AE might
impact female brain development more than it does in males. This is
interesting in light of data showing that AE makes female mice more
sensitive to stress-induced negative affect compared to males [43],
and that females are more sensitive to stress-induced relapse
compared to males [44]. We therefore hypothesize that AE on top of
MIA might lead to dysregulated HPA-axis activity in females [45],
which may underlie the increased drinking observed in these studies
and is a topic of our ongoing work.
The primary neural features that differentiated across groups

also differed between sexes. Predictive models distinguished Dual
rats from control rats, and Dual rats from AE rats, relatively well in
both sexes. However, an interesting pattern emerged when we

looked at the most predictive neural features for each sex. Cortical
features, particularly from the IL, largely contained the most
information in predicting females from every other group. In
males, the predictive features were more mixed; though a lot of
the information still came from cortical sites, hippocampal and
striatal features, as well as cortical-hippocampal coherence, were
also predictive of male Dual rats. These data help us identify which
neural features to target to try to reduce alcohol misuse in future
studies. For example, we have previously shown that deep brain
stimulation to the NAc shell has the capacity to reduce alcohol
consumption in high-drinking male rats [27]. These data are only a
small portion of the literature suggesting that neuromodulation-
based therapies can be efficacious for addiction and other
neuropsychiatric disorders [46], but these studies have almost
exclusively been done in male animals. In order to successfully
initiate neuromodulation-based therapies that will be relevant to
clinical populations, it is vital to understand “where” and “what”
(e.g., striatal vs. cortical oscillations) we should be targeting, and
whether these parameters may be different in males vs. females.
The present study is a promising first step in the process of
identifying neural features that may underly maladaptive beha-
viors, and our future work will test the capacity for cortical vs.
striatal vs. hippocampal stimulation to reduce drinking in male
and female Dual rats.
There are a few important limitations to consider. First, while

MIA did significantly enhance circulating TNFα, it did not
significantly increase IL6 levels two hours after injection. However,
we did see reduced weight gain and eating behavior in dams
exposed to polyI:C, which is consistent with other reports [22, 23].
Combined with the hypolocomotion we observed in male MIA
offspring, we are confident that polyI:C induced MIA in our study.
In future studies, collecting blood at different timepoints (e.g.,
90 minutes) may help capture the previously observed increases in
pro-inflammatory cytokines [47, 48]. We also cannot rule out the
possibility that injection stress may have impacted our cytokine
data in the dams, as acute stress has been shown to enhance
circulating IL6 and TNFα levels [49, 50]. Secondly, littermates were
used in the same groups due to the prenatal exposure time-point
for polyI:C. We thus controlled for litter effects in our analyses and
found no effect of the dam on adolescent and adulthood alcohol
drinking. However, there were litter effects for locomotor response
to novelty, which could have been influenced by previously
observed MIA-induced changes in maternal care behavior [51].
Our future studies will therefore measure maternal care behaviors
in MIA and control dams to be used as a covariate in analyses, and
try to distribute pups from each dam across different experiments.
Finally, we did not observe MIA-induced changes to anxiety
behaviors measured in the open field, as others have seen
previously [52]. However, our primary aim was to measure
locomotor behavior and the data was collected in the dark. We
thus hypothesize that a more targeted and thorough analysis of
negative affective behaviors in MIA offspring is warranted in
future studies.

CONCLUSION
The current data helps us begin to understand the neurobiological
underpinnings of the behavioral and cognitive deficits linked to
prenatal exposure to infection and adolescent alcohol exposure
[53, 54]. Our data also provide support for a novel heuristic
neurodevelopmental model which we can use to study the biological
basis of co-occurring mental illness and substance use. Although the
current study is specifically focused on alcohol drinking, these results
have significant implications for other addictive substances like
cannabis and nicotine, which are two of the other most commonly
used drugs by individuals with mental illness [1]. In other words, the
Dual model in the present study may serve as a translationally
relevant platform on which we can better study the neurobiological

Table 1. The neural features containing the most information for each
of the models that performed above chance estimates.

Dual vs. Control Dual vs. MIA Dual vs. AE

Male Female Male Female Male Female

ILL – CA1R α ILR lγ ---- ILR β CA1R β CA1L β
CA1R lγ ILR δ ---- ILR lγ PLL δ NAcL β
PLR α ILR θ ---- ILR hγ PLR δ ILR β
NAcL δ ILL δ ---- PLL β PLL θ PLL β
ILL – CA1L α ILL lγ ---- ILL β CA1L β ILR lγ
The 5 LFP features with the highest individual predictive accuracies of Dual
vs. Control, Dual vs. MIA in females, and Dual vs. AE. Frequency bands
[delta (δ), theta (θ), alpha (α), beta (β), low gamma (lγ), and high gamma
(hγ)] are described for power features within, and coherence between,
neural sites (NAc nucleus accumbens shell, CA1 dorsal hippocampus, PL
prelimbic mPFC, IL infralimbic mPFC). Left or right hemisphere is depicted
as a subscript.
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underpinnings of, and develop treatments for, co-occurring dis-
orders. These studies and our future work will contribute to the larger
goal of identifying how early environmental stressors change the
brain in such a way as to predispose an individual to develop a
mental illness and/or SUD, uncovering biological treatment targets
for therapeutic development.
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