9 research outputs found

    Promiscuous mismatch extension by human DNA polymerase lambda

    Get PDF
    DNA polymerase lambda (Pol λ) is one of several DNA polymerases suggested to participate in base excision repair (BER), in repair of broken DNA ends and in translesion synthesis. It has been proposed that the nature of the DNA intermediates partly determines which polymerase is used for a particular repair reaction. To test this hypothesis, here we examine the ability of human Pol λ to extend mismatched primer-termini, either on ‘open’ template-primer substrates, or on its preferred substrate, a 1 nt gapped-DNA molecule having a 5′-phosphate. Interestingly, Pol λ extended mismatches with an average efficiency of ≈10−2 relative to matched base pairs. The match and mismatch extension catalytic efficiencies obtained on gapped molecules were ≈260-fold higher than on template-primer molecules. A crystal structure of Pol λ in complex with a single-nucleotide gap containing a dG·dGMP mismatch at the primer-terminus (2.40 Å) suggests that, at least for certain mispairs, Pol λ is unable to differentiate between matched and mismatched termini during the DNA binding step, thus accounting for the relatively high efficiency of mismatch extension. This property of Pol λ suggests a potential role as a ‘mismatch extender’ during non-homologous end joining (NHEJ), and possibly during translesion synthesis

    Validation of suspected somatic Single Nucleotide Variations in the brain of Alzheimer disease patients

    Get PDF
    Next-generation sequencing techniques and genome-wide association study analyses have provided a huge amount of data, thereby enabling the identification of DNA variations and mutations related to disease pathogenesis. New techniques and software tools have been developed to improve the accuracy and reliability of this identification. Most of these tools have been designed to discover and validate single nucleotide variants (SNVs). However, in addition to germ-line mutations, human tissues bear genomic mosaicism, which implies that somatic events are present only in low percentages of cells within a given tissue, thereby hindering the validation of these variations using standard genetic tools. Here we propose a new method to validate some of these somatic mutations. We combine a recently developed software with a method that cuts DNA by using restriction enzymes at the sites of the variation. The non-cleaved molecules, which bear the SNV, can then be amplified and sequenced using Sanger's technique. This procedure, which allows the detection of alternative alleles present in as few as 10% of cells, could be of value for the identification and validation of low frequency somatic events in a variety of tissues and diseases

    Structure and Function of a Mycobacterial NHEJ DNA Repair Polymerase

    Get PDF
    Non homologous end-joining (NHEJ)-mediated repair of DNA double-strand breaks in prokaryotes requires Ku and a specific multidomain DNA ligase (LigD). We present crystal structures of the primase/polymerisation domain (PolDom) of Mycobacterium tuberculosis LigD, alone and complexed with nucleotides. The PolDom structure combines the general fold of the archaeo-eukaryotic primase (AEP) superfamily with additional loops and domains that together form a deep cleft on the surface, likely used for DNA binding. Enzymatic analysis indicates that the PolDom of LigD, even in the absence of accessory domains and Ku proteins, has the potential to recognise DNA end-joining intermediates. Strikingly, one of the main signals for the specific and efficient binding of PolDom to DNA is the presence of a 5'-phosphate group, located at the single/double-stranded junction at both gapped and 3'-protruding DNA molecules. Although structurally unrelated, Pol lambda and Pol mu, the two eukaryotic DNA polymerases involved in NHEJ, are endowed with a similar capacity to bind a 5'-phosphate group. Other properties that are beneficial for NHEJ, such as the ability to generate template distortions and realignments of the primer, displayed by Pol lambda and Pol mu, are shared by the PolDom of bacterial LigD. In addition, PolDom can perform non-mutagenic translesion synthesis on termini containing modified bases. Significantly, ribonucleotide insertion appears to be a recurrent theme associated with NHEJ, maximised in this case by the deployment of a dedicated primase, although its in vivo relevance is unknown

    Validation of suspected somatic Single Nucleotide Variations in the brain of Alzheimer disease patients

    No full text
    Next-generation sequencing techniques and genome-wide association study analyses have provided a huge amount of data, thereby enabling the identification of DNA variations and mutations related to disease pathogenesis. New techniques and software tools have been developed to improve the accuracy and reliability of this identification. Most of these tools have been designed to discover and validate single nucleotide variants (SNVs). However, in addition to germ-line mutations, human tissues bear genomic mosaicism, which implies that somatic events are present only in low percentages of cells within a given tissue, thereby hindering the validation of these variations using standard genetic tools. Here we propose a new method to validate some of these somatic mutations. We combine a recently developed software with a method that cuts DNA by using restriction enzymes at the sites of the variation. The non-cleaved molecules, which bear the SNV, can then be amplified and sequenced using Sanger's technique. This procedure, which allows the detection of alternative alleles present in as few as 10% of cells, could be of value for the identification and validation of low frequency somatic events in a variety of tissues and diseases

    Structure of a NHEJ polymerase-mediated DNA synaptic complex

    No full text
    Nonhomologous end joining (NHEJ) is a critical DNA double-strand break (DSB) repair pathway required to maintain genome stability. Many prokaryotes possess a minimalist NHEJ apparatus required to repair DSBs during stationary phase, composed of two conserved core proteins, Ku and ligase D (LigD). The crystal structure of Mycobacterium tuberculosis polymerase domain of LigD mediating the synapsis of two noncomplementary DNA ends revealed a variety of interactions, including microhomology base pairing, mismatched and flipped-out bases, and 3' termini forming hairpin-like ends. Biochemical and biophysical studies confirmed that polymerase-induced end synapsis also occurs in solution. We propose that this DNA synaptic structure reflects an intermediate bridging stage of the NHEJ process, before end processing and ligation, with both the polymerase and the DNA sequence playing pivotal roles in determining the sequential order of synapsis and remodeling before end joining

    Lack of sugar discrimination by human Pol µ requires a single glycine residue

    Get PDF
    DNA polymerase mu (Pol µ) is a novel family X DNA polymerase that has been suggested to play a role in micro-homology mediated joining and repair of double strand breaks. We show here that human Pol µ is not able to discriminate against the 2′-OH group of the sugar moiety. It inserts rNTPs with an efficiency that is <10-fold lower than that of dNTPs, in sharp contrast with the >1000-fold discrimination characteristic of most DNA-dependent DNA polymerases. The lack of sugar discrimination by Pol µ is demonstrated by its ability to add rNTPs to both DNA and RNA primer strands, and to insert both deoxy- and ribonucleotides on growing nucleic acid chains. 3D-modelling of human Pol µ based on the available Pol β and TdT structural information allowed us to predict candidate residues involved in sugar discrimination. Thus, a single amino acid substitution in which Gly433 residue of Pol µ was mutated to the consensus tyrosine present in Pol β, produced a strong increase in the discrimination against ribonucleotides. The unusual capacity to insert both rNTPs and dNTPs will be discussed in the context of the predicted roles of Pol µ in DNA repair

    The Catalytic Mechanisms of Binuclear Metallohydrolases

    Get PDF
    With the aim of critically assessing the current models for metal ion assisted hydrolytic reaction mechanisms, an updated review of the current understanding of metallohydrolase-catalyzed reactions is presented. Focus is on four systems, purple acid phosphatases (PAPs), Ser/Thr protein phosphatases (PPs), 3′-5′ exonucleases, and 5′-nucleotidases (5′-NTs), which have contributed to major advancement of the understanding of the catalytic mechanisms that operate in such enzymes
    corecore