1,155 research outputs found

    Quantum simulation of Anderson and Kondo lattices with superconducting qubits

    Full text link
    We introduce a mapping between a variety of superconducting circuits and a family of Hamiltonians describing localized magnetic impurities interacting with conduction bands. This includes the Anderson model, the single impurity one- and two-channel Kondo problem, as well as the 1D Kondo lattice. We compare the requirements for performing quantum simulations using the proposed circuits to those of universal quantum computation with superconducting qubits, singling out the specific challenges that will have to be addressed.Comment: Longer versio

    Identification, Discrimination, and Discovery of Species of Marine Planktonic Ostracods Using DNA Barcodes

    Get PDF
    The Ostracoda (Crustacea; Class Ostracoda) is a diverse, frequently abundant, and ecologically important component of the marine zooplankton assemblage. There are more than 200 described species of marine planktonic ostracods, many of which (especially conspecific species) can be identified only by microscopic examination and dissection of fragile morphological characters. Given the complexity of species identification and increasing lack of expert taxonomists, DNA barcodes (short DNA sequences for species discrimination and identification) are particularly useful and necessary. Results are reported from analysis of 210 specimens of 78 species of marine planktonic ostracods, including two novel species, and 51 species for which barcodes have not been previously published. Specimens were collected during 2006 to 2008 from the Atlantic, Indian, and Southern Oceans, Greenland Sea and Gulf of Alaska. Samples were collected from surface to 5,000 m using various collection devices. DNA sequence variation was analyzed for a 598 base-pair region of the mitochondrial cytochrome oxidase subunit I (COI) gene. Kimura-2-Parameter (K2P) genetic distances within described species (mean = 0.010 ± 0.017 SD) were significantly smaller than between species (0.260 + 0.080), excluding eight taxa hypothesized to comprise cryptic species due to morphological variation (especially different size forms) and/or collection from different geographic regions. These taxa showed similar K2P distance values within (0.014 + 0.026) and between (0.221 ± 0.068) species. All K2P distances > 0.1 resulted from comparisons between identified or cryptic species, with no overlap between intra- and interspecific genetic distances. A Neighbor Joining tree resolved nearly all described species analyzed, with multiple sequences forming monophyletic clusters with high bootstrap values (typically 99%). Based on taxonomically and geographically extensive sampling and analysis (albeit with small sample sizes), the COI barcode region was shown to be a valuable character for discrimination, recognition, identification, and discovery of species of marine planktonic ostracods

    Quantifying the role of bedrock lithology in water movement at different scales

    Get PDF
    The wide variety of geological materials on Earth and the irregularity of its distribution patterns are some evidences of the heterogeneity and complexity of our planet. Bedrock lithology plays an important role inside this heterogeneity

    Be‐10 dating of ice‐marginal moraines in the Khumbu Valley, Nepal, Central Himalaya, reveals the response of monsoon‐influenced glaciers to Holocene climate change

    Get PDF
    The dynamic response of large mountain glaciers to climatic forcing operates over timescales of several centuries and therefore understanding how these glaciers change requires observations of their behavior through the Holocene. We used Be-10 exposure-age dating and geomorphological mapping to constrain the evolution of glaciers in the Khumbu Valley in the Everest region of Nepal. Khumbu and Lobuche Glaciers are surrounded by high-relief lateral and terminal moraines from which seven glacial stages were identified and dated to 7.4 ± 0.2, 5.0 ± 0.3, 3.9 ± 0.1, 2.8 ± 0.2, 1.3 ± 0.1, 0.9 ± 0.02, and 0.6 ± 0.16 ka. These stages correlate to each of the seven latest Holocene regional glacial stages identified across the monsoon-influenced Himalaya, demonstrating that a coherent record of high elevation terrestrial palaeoclimate change can be extracted from dynamic mountain landscapes. The time-constrained moraine complex represents a catchment-wide denudation rate of 0.8–1.4 mm a−1 over the last 8 kyr. The geometry of the ablation area of Khumbu Glacier changed around 4 ka from a broad, shallow ice tongue to become narrower and thicker as restricted by the topographic barrier of the terminal moraine complex

    Mobilized Peripheral Blood Stem Cells Versus Unstimulated Bone Marrow As a Graft Source for T-Cell-Replete Haploidentical Donor Transplantation Using Post-Transplant Cyclophosphamide.

    Get PDF
    Purpose T-cell-replete HLA-haploidentical donor hematopoietic transplantation using post-transplant cyclophosphamide was originally described using bone marrow (BM). With increasing use of mobilized peripheral blood (PB), we compared transplant outcomes after PB and BM transplants. Patients and Methods A total of 681 patients with hematologic malignancy who underwent transplantation in the United States between 2009 and 2014 received BM (n = 481) or PB (n = 190) grafts. Cox regression models were built to examine differences in transplant outcomes by graft type, adjusting for patient, disease, and transplant characteristics. Results Hematopoietic recovery was similar after transplantation of BM and PB (28-day neutrophil recovery, 88% v 93%, P = .07; 100-day platelet recovery, 88% v 85%, P = .33). Risks of grade 2 to 4 acute (hazard ratio [HR], 0.45; P \u3c .001) and chronic (HR, 0.35; P \u3c .001) graft-versus-host disease were lower with transplantation of BM compared with PB. There were no significant differences in overall survival by graft type (HR, 0.99; P = .98), with rates of 54% and 57% at 2 years after transplantation of BM and PB, respectively. There were no differences in nonrelapse mortality risks (HR, 0.92; P = .74) but relapse risks were higher after transplantation of BM (HR, 1.49; P = .009). Additional exploration confirmed that the higher relapse risks after transplantation of BM were limited to patients with leukemia (HR, 1.73; P = .002) and not lymphoma (HR, 0.87; P = .64). Conclusion PB and BM grafts are suitable for haploidentical transplantation with the post-transplant cyclophosphamide approach but with differing patterns of treatment failure. Although, to our knowledge, this is the most comprehensive comparison, these findings must be validated in a randomized prospective comparison with adequate follow-up

    A vision for safer food contact materials: Public health concerns as drivers for improved testing

    Get PDF
    Food contact materials (FCMs) and food contact articles are ubiquitous in today's globalized food system. Chemicals migrate from FCMs into foodstuffs, so called food contact chemicals (FCCs), but current regulatory requirements do not sufficiently protect public health from hazardous FCCs because only individual substances used to make FCMs are tested and mostly only for genotoxicity while endocrine disruption and other hazard properties are disregarded. Indeed, FCMs are a known source of a wide range of hazardous chemicals, and they likely contribute to highly prevalent non-communicable diseases. FCMs can also include non-intentionally added substances (NIAS), which often are unknown and therefore not subject to risk assessment. To address these important shortcomings, we outline how the safety of FCMs may be improved by (1) testing the overall migrate, including (unknown) NIAS, of finished food contact articles, and (2) expanding toxicological testing beyond genotoxicity to multiple endpoints associated with non-communicable diseases relevant to human health. To identify mechanistic endpoints for testing, we group chronic health outcomes associated with chemical exposure into Six Clusters of Disease (SCOD) and we propose that finished food contact articles should be tested for their impacts on these SCOD. Research should focus on developing robust, relevant, and sensitive in-vitro assays based on mechanistic information linked to the SCOD, e.g., through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision will improve prevention of chronic diseases that are associated with hazardous chemical exposures, including from FCMs
    • 

    corecore