25 research outputs found

    Persönlichkeit und Entspannung vs. Ablenkung beim Zahnarzt

    Get PDF
    Die vorliegende Studie untersuchte den Einfluß von hoch und niedrig ausgeprägter Zahnbehandlungsangst und den Einfluß der Intervention durch ein Entspannungs- und Ablenkungsverfahren (und Kontrolle) bei der Antizipation einer Zahnbehandlung. Die Teilnehmer waren 49 Patienten einer Giessener Zahnarztpraxis, die parallelisiert nach Alter und Geschlecht auf die Bedingungen aufgeteilt wurden. Anders als in anderen Studien wurden die verschiedenen Meßaspekte in umfassender Weise betrachtet: es wurden peripher-physiologische, immunologische, subjektiv-verbale und behaviorale Indikatoren herangezogen. Außerdem wurde der Einfluß der Ausprägung der Zahnbehandlungsangst und der Art der Experimentalbedingung auf das aktuelle Coping-verhalten untersucht. Es zeigte sich, dass peripher-physiologische und immunologische Indikatoren nicht von der Ausprägung der Zahnbehandlungsangst beeinflußt waren. Allerdings zeigten sich subjektiv-verbale Unterschiede: Hochängstliche schätzten ihre körperliche Erregung höher ein als Niedrigängstliche, was auf eine Tendenz der Hochängstlichen zurückgeführt wurde, körperliche Reaktionen stärker als Niedrigängstliche zu beachten. Weiterhin zeigten sich behaviorale Unterschiede: Hochängstliche wirkten starrer und wurden als ängstlicher, weniger entspannt und weniger kooperativ eingeschätzt. Allerdings hat sich das aktuelle Copingverhalten von Hoch- und Niedrigängstlichen nicht unterschieden. Die Ergebnisse sprechen jedoch für eine Wirksamkeit des Entspannungsverfahrens, vor allem bei Hochängstlichen. Zwar haben sich die Experimentalgruppen, wie auch die Persönlichkeitsgruppen, nicht in peripher-physiologischen und immunologischen Indikatoren unterschieden, allerdings verbesserte das Entspannungsverfahren die subjektive Befindlichkeit besonders bei den Hochängstlichen. Auch behaviorale Unterschiede weisen auf die Wirksamkeit des Entspannungsverfahrens hin, dass sich von der Wirkung des Ablenkungsverfahrens und der Kontrollbedingung unterscheidet. Die Ergebnisse zur Wirksamkeit des Ablenkungsverfahrens sind weniger eindeutig. Das Ablenkungsverfahren unterscheidet sich in einigen Punkten vom Entspannungsverfahren, allerdings kaum von der Kontrollbedingung. Dies wird der verwendeten Technik (Audio-Präsentation) angelastet, die vergleichsweise wenig Ablenkungskraft hat. Allerdings beeinflußte das Ablenkungsverfahren das aktuelle Copingverhalten während der Zahnbehandlung

    Modern venomics--Current insights, novel methods, and future perspectives in biological and applied animal venom research

    Get PDF
    Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.This work is funded by the European Cooperation in Science and Technology (COST, www.cost.eu) and based upon work from the COST Action CA19144 – European Venom Network (EUVEN, see https://euven-network.eu/). This review is an outcome of EUVEN Working Group 2 (“Best practices and innovative tools in venomics”) led by B.M.v.R. As coordinator of the group Animal Venomics until end 2021 at the Institute for Insectbiotechnology, JLU Giessen, B.M.v.R. acknowledges the Centre for Translational Biodiversity Genomics (LOEWE-TBG) in the programme “LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse's Ministry of Higher Education, Research, and the Arts. B.M.v.R. and I.K. further acknowledge funding on venom research by the German Science Foundation to B.M.v.R. (DFG RE3454/6-1). A.C., A.V., and G.Z. were supported by the European Union's Horizon 2020 Research and Innovation program through Marie Sklodowska-Curie Individual Fellowships (grant agreements No. A.C.: 896849, A.V.: 841576, and G.Z.: 845674). M.P.I. is supported by the TALENTO Program by the Regional Madrid Government (2018-T1/BIO-11262). T.H.'s venom research is funded by the DFG projects 271522021 and 413120531. L.E. was supported by grant No. 7017-00288 from the Danish Council for Independent Research (Technology and Production Sciences). N.I. acknowledges funding on venom research by the Research Fund of Nevsehir Haci Bektas Veli University (project Nos. ABAP20F28, BAP18F26). M.I.K. and A.P. acknowledge support from GSRT National Research Infrastructure structural funding project INSPIRED (MIS 5002550). G.A. acknowledges support from the Slovenian Research Agency grants P1-0391, J4-8225, and J4-2547. G.G. acknowledges support from the Institute for Medical Research and Occupational Health, Zagreb, Croatia. E.A.B.U. is supported by a Norwegian Research Council FRIPRO-YRT Fellowship No. 287462

    Comparative studies on the nervous system of the Chilopoda with emphasis on the organization of deutocerebral neuropils, sensory structures and olfactory behavior

    No full text
    Im Gegensatz zu den Hexapoda und Crustacea (Tetraconata) liegen nur wenige Daten zur Architektur des Nervensystems der Chilopoda vor. Ein besonderer Fokus in neuroanatomischen Studien der Arthropoda liegt auf der internen Organisation des Deutocerebrum. Das Deutocerebrum ist ein primärer Verschaltungsort antennaler Sinnesmodalitäten. Es wurde von Schachtner et al. (2005) gezeigt, dass bei Vertretern der Hexapoda und Crustacea spezifische Synapomorphien in Bezug auf die olfaktorischen Glomeruli festzustellen sind. Durch den Einsatz verschiedenster histologischer Techniken, immunhistochemischer sowie histochemischer Methoden, anterograder Backfill-Anfärbungen und der dreidimensionalen Rekonstruktion wurde das Deutocerebrum der Chilopoda in dieser Dissertation untersucht um zu verifizieren, ob das Deutocerebrum ähnlich zu dem der Tetraconata ausgeprägt und ob diese innerhalb der Mandibulata homologisierbar sind. Zudem wurden die gewonnen Daten mit neuroanatomischen Studien zu den Chelicerata verglichen. Das Deutocerebrum der Chilopoda ist durch mehrere Merkmale charakterisiert: (1) Innervierung durch antennale sensorische Neuriten, (2) ein anterior gelegener olfaktorischer Lobus, (3) der posterior gelegene Corpus lamellosum, (4) afferente Projektionen aus der Antenne die in das Unterschlundganglion projizieren sowie (5) Projektionstrakte zwischen dem Protocerebrum und dem olfaktorischen Lobus. Neuroanatomische Daten zeigen, dass ein Schwestergruppenverhältnis zwischen Myriapoda und Chelicerata höchst unwahrscheinlich ist, da das durch sensorische Anhänge innervierte Neuromer bei den Chelicerata nicht durch ein mechanosensorisches Neuropil charakterisiert ist. Basierend auf den Befunden der untersuchten Chilopoda ergibt sich als Apomorphie der Mandibulata, dass der sensorische Eingang durch die homologe deutocerebrale Antenne zwei distinkte Neuropilbereiche innerviert. Sensorische Informationen werden hauptsächlich von antennalen Sensillen wahrgenommen. Mit Ausnahme der Scutigeromorpha, lagen für alle höheren Taxa der Chilopoda Daten zur Struktur und Diversität antennaler Sensillen vor. In der vorliegenden Arbeit konnte diese Lücke geschlossen werden und ein Vergleich der antennalen Sensillen innerhalb der Chilopoda durchgeführt werden. Innerhalb der Chilopoda lassen sich für die Scutigeromorpha drei einzigartige antennale Strukturen feststellen: (1) der Besitz von langen Antennen mit Noden, die „sensory cones“ tragen, (2) der Besitz eines zweigliedrigen Schaftes, der das Schaftorgan trägt und (3) der Besitz des Beak-like Sensillums. Ein dritter Aspekt dieser Arbeit behandelt verhaltensbiologische Untersuchungen bei Vertretern der Chilopoda. Zusammenfassend zeigen die durchgeführten Experimente, dass die Chilopoda (im Speziellen Scutigera coleoptrata) Sinnesreize über die Antenne wahrnehmen kann, spezifische neuronale Strukturen für die Verarbeitung besitzen und auf olfaktorische Reize reagieren.Contrary to hexapods and crustaceans (Tetraconata), only few data on the architecture of the nervous system of chilopods are present. A focus in neuroanatomical studies of arthropods is the deutocerebrum which is a primary processing area of sensory input from the first antennae. Schachter et al. (2005) compiled several synapomorphic characters of the olfactory glomeruli of hexapods and crustaceans. To test whether the architecture of the deutocerebrum of chilopods is homologue to that of the Tetraconata, different techniques such as histology, immunhistochemistry and histochemistry, anterograde backfills and threedimensional reconstructions were conducted. Furthermore, the achieved neuroanatomical data were compared to available studies on the nervous systems of chelicerates. The deutocerebrum in Chilopoda is characterized by several features: (1) innervation by antennal sensory neurites, (2) an anterior olfactory lobe, (3) a posterior Corpus lamellosum, (4) afferent neurite projections into the subesophageal ganglion and (5) projection tracts between protocerebral neuropils and the olfactory lobe. Neuroanatomical data show that a sistergroup relationship between Myriapoda and Chilopoda is highly unlikely because in the Chelicerata the innervated neuromere is not equipped with a mechanosensory neuropil. In summary, in the Mandibulata the sensoric neurites innervate two distinct neuropilar regions. This feature is postulated as an apomorphic character. The majority of sensory information in Chilopoda is perceived by antennal sensilla. With exception of the Scutigeromorpha, for all other higher taxa of the Chilopoda information on the external structure and distribution of antennal sensilla is available. Within the Chilopoda, three unique characters were found for the Scutigeromorpha: (1) the presence of long antennae with nodes bearing sensory cones, (2) the presence of a bipartite shaft including the shaft organ, and (3) the presence of beak-like sensilla. A third aspect of this dissertation deals with ethological investigations of representatives of the Chilopoda. To sum up, ethological experiments show that chilopods (and especially Scutigera coleoptrata) can perceive olfactory stimuli via the antennae, possess distinct nervous system structures to process these information, and are able to react to olfactory stimuli

    Serotonergic neurons in the ventral nerve cord of Chilopoda – a mandibulate pattern of individually identifiable neurons

    No full text
    Abstract Background Given the numerous hypotheses concerning arthropod phylogeny, independent data are needed to supplement knowledge based on traditional external morphology and modern molecular sequence information. One promising approach involves comparisons of the structure and development of the nervous system. Along these lines, the morphology of serotonin-immunoreactive neurons in the ventral nerve cord has been investigated in numerous tetraconate taxa (Crustacea and Hexapoda). It has been shown that these neurons can be identified individually due to their comparably low number, characteristic soma position, and neurite morphology, thus making it possible to establish homologies at the single cell level. Within Chilopoda (centipedes), detailed analyses of major branching patterns of serotonin-immunoreactive neurons are missing, but are crucial for developing meaningful conclusions on the homology of single cells. Results In the present study, we re-investigated the distribution and projection patterns of serotonin-immunoreactive neurons in the ventral nerve cord of three centipede species: Scutigera coleoptrata, Lithobius forficatus, and Scolopendra oraniensis. The centipede serotonergic system in the ventral nerve cord contains defined groups of individually identifiable neurons. An anterior and two posterior immunoreactive neurons per hemiganglion with contralateral projections, a pair of ipsilateral projecting lateral neurons (an autapomorphic character for Chilopoda), as well as a postero-lateral group of an unclear number of cells are present in the ground pattern of Chilopoda. Conclusions Comparisons to the patterns of serotonin-immunoreactive neurons of tetraconate taxa support the homology of anterior and posterior neurons. Our results thus support a sister group relationship of Myriapoda and Tetraconata and, further, a mandibulate ground pattern of individually identifiable serotonin-immunoreactive neurons in the ventral nerve cord. Medial neurons are not considered to be part of the tetraconate ground pattern, but could favor the ‘Miracrustacea hypothesis’, uniting Remipedia, Cephalocarida, and Hexapoda

    A comparative analysis of the nervous system of cheilostome bryozoans

    No full text
    Abstract Background Bryozoans are sessile aquatic suspension feeders in mainly marine, but also freshwater habitats. Most species belong to the marine and calcified Cheilostomata. Since this taxon remains mostly unstudied regarding its neuroanatomy, the focus of this study is on the characterization and ground pattern reconstruction of the autozooidal nervous system based on six representatives. Results A common neuronal innervation pattern is present in the investigated species: a cerebral ganglion is located at the base of the lophophore, from where neurite bundles embrace the mouth opening to form a circumoral nerve ring. Four neurite bundles project from the cerebral ganglion to innervate peripheral areas, such as the body wall and parietal muscles via the tentacle sheath. Five neurite bundles comprise the main innervation of the visceral tract. Four neurite bundles innervate each tentacle via the circumoral nerve ring. Mediofrontal tentacle neurite bundles emerge directly from the nerve ring. Two laterofrontal- and one abfrontal tentacle neurite bundles emanate from radial neurite bundles, which originate from the cerebral ganglion and circumoral nerve ring in between two adjacent tentacles. The radial neurite bundles terminate in intertentacular pits and give rise to one abfrontal neurite bundle at the oral side and two abfrontal neurite bundles at the anal side. Similar patterns are described in ctenostome bryozoans. Conclusions The present results thus represent the gymnolaemate situation. Innervation of the tentacle sheath and visceral tract by fewer neurite bundles and tentacular innervation by four to six tentacle neurite bundles support cyclostomes as sister taxon to gymnolaemates. Phylactolaemates feature fewer distinct neurite bundles in visceral- and tentacle sheath innervation, which always split in nervous plexus, and their tentacles have six neurite bundles. Thus, this study supports phylactolaemates as sistergroup to myolaemates

    A comparative analysis of the ventral nerve cord of Lithobius forficatus (Lithobiomorpha): morphology, neuroanatomy, and individually identifiable neurons

    No full text
    In light of competing hypotheses on arthropod phylogeny, independent data are needed in addition to traditional morphology and modern molecular approaches. One promising approach involves comparisons of structure and development of the nervous system. In addition to arthropod brain and ventral nerve cord morphology and anatomy, individually identifiable neurons (IINs) provide new character sets for comparative neurophylogenetic analyses. However, very few species and transmitter systems have been investigated, and still fewer species of centipedes have been included in such analyses. In a multi-methodological approach, we analyze the ventral nerve cord of the centipede Lithobius forficatus using classical histology, X-ray micro-computed tomography and immunohistochemical experiments, combined with confocal laser-scanning microscopy to characterize walking leg ganglia and identify IINs using various neurotransmitters. In addition to the subesophageal ganglion, the ventral nerve cord of L. forficatus is composed of the forcipular ganglion, 15 well-separated walking leg ganglia, each associated with eight pairs of nerves, and the fused terminal ganglion. Within the medially fused hemiganglia, distinct neuropilar condensations are located in the ventral-most domain. Immunoreactive neurons of different transmitter systems (allatostatin, histamine, and FMRF-amide) display serially homologous patterns that may lay the foundation for comparison with other arthropod taxa. Moreover, a pair of histaminergic neurons may constitute a promising intra- as well as interspecific IIN candidate

    A comparative analysis of the ventral nerve cord of Lithobius forficatus (Lithobiomorpha): morphology, neuroanatomy, and individually identifiable neurons

    No full text
    In light of competing hypotheses on arthropod phylogeny, independent data are needed in addition to traditional morphology and modern molecular approaches. One promising approach involves comparisons of structure and development of the nervous system. In addition to arthropod brain and ventral nerve cord morphology and anatomy, individually identifiable neurons (IINs) provide new character sets for comparative neurophylogenetic analyses. However, very few species and transmitter systems have been investigated, and still fewer species of centipedes have been included in such analyses. In a multi-methodological approach, we analyze the ventral nerve cord of the centipede Lithobius forficatus using classical histology, X-ray micro-computed tomography and immunohistochemical experiments, combined with confocal laser-scanning microscopy to characterize walking leg ganglia and identify IINs using various neurotransmitters. In addition to the subesophageal ganglion, the ventral nerve cord of L. forficatus is composed of the forcipular ganglion, 15 well-separated walking leg ganglia, each associated with eight pairs of nerves, and the fused terminal ganglion. Within the medially fused hemiganglia, distinct neuropilar condensations are located in the ventral-most domain. Immunoreactive neurons of different transmitter systems (allatostatin, histamine, and FMRF-amide) display serially homologous patterns that may lay the foundation for comparison with other arthropod taxa. Moreover, a pair of histaminergic neurons may constitute a promising intra- as well as interspecific IIN candidate

    The ultimate legs of Chilopoda (Myriapoda): a review on their morphological disparity and functional variability

    No full text
    The arthropodium is the key innovation of arthropods. Its various modifications are the outcome of multiple evolutionary transformations, and the foundation of nearly endless functional possibilities. In contrast to hexapods, crustaceans, and even chelicerates, the spectrum of evolutionary transformations of myriapod arthropodia is insufficiently documented and rarely scrutinized. Among Myriapoda, Chilopoda (centipedes) are characterized by their venomous forcipules—evolutionarily transformed walking legs of the first trunk segment. In addition, the posterior end of the centipedes’ body, in particular the ultimate legs, exhibits a remarkable morphological heterogeneity. Not participating in locomotion, they hold a vast functional diversity. In many centipede species, elongation and annulation in combination with an augmentation of sensory structures indicates a functional shift towards a sensory appendage. In other species, thickening, widening and reinforcement with a multitude of cuticular protuberances and glandular systems suggests a role in both attack and defense. Moreover, sexual dimorphic characteristics indicate that centipede ultimate legs play a pivotal role in intraspecific communication, mate finding and courtship behavior. We address ambiguous identifications and designations of podomeres in order to point out controversial aspects of homology and homonymy. We provide a broad summary of descriptions, illustrations, ideas and observations published in past 160 years, and propose that studying centipede ultimate legs is not only essential in itself for filling gaps of knowledge in descriptive morphology, but also provides an opportunity to explore diverse pathways of leg transformations within Myriapoda

    The unexpected diverse venom evolution in centipedes:

    No full text
    Jüngste Erkenntnisse aus der modernen Tiergiftforschung zeigen, dass die Vorfahren der Hundertfüßer vermutlich ein recht simples Gift mit wenigen neurotoxischen Komponenten und Enzymen besaßen. Dieser Giftcocktail wurde im Laufe der Evolution unerwartet stark verändert und an die heutige Lebensweise der Hundertfüßer angepasst. Tatsächlich gibt es keine Toxinfamilie, die in den Giften der untersuchten Arten aller fünf Ordnungen gemeinsam vorkommt, und damit gibt es auch nicht das eine Hundertfüßergift. Die Klimax sind die extrem diversen Gifte der Skolopender, die zahlreiche neue Neurotoxine beinhalten. Die Prozesse, wie die Giftproteine in den Hunderfüßern entstehen und evolvieren, sind hier durch neue Studien beleuchtet. Erste Daten zeigen, dass auf genomischer Ebene sogar horizontaler Gentransfer eine Rolle spielen könnte.Recent studies in the field of modern venomics illustrate that the ancestors of today’s centipedes presumably had a rather simple venom cocktail at their disposal with few neurotoxic components and enzymes. In the course of evolution, this venom cocktail has experienced unexpected changes with diverse adaptations to centipede lifestyles – a development that led to unique venoms in all five centipede orders that share no single toxin family, which makes it impossible to speak of a centipede venom. The venoms of giant centipedes (Scolopendromorpha) represent a climax with several new neurotoxic peptides. The processes that have led to the development and evolution of venom proteins in centipedes are illustrated here. First data on genomic level suggest that even horizontal gene transfer might play an important role

    Primary processing neuropils associated with the malleoli of camel spiders (Arachnida, Solifugae) : a re-evaluation of axonal pathways

    Get PDF
    CITATION: Sombke, A., et al. 2019. Primary processing neuropils associated with the malleoli of camel spiders (Arachnida, Solifugae) : a re-evaluation of axonal pathways. Zoological Letters, 5:26, doi:10.1186/s40851-019-0137-z.The original publication is available at https://zoologicalletters.biomedcentral.comBackground - Arachnids possess highly specialized and unorthodox sense organs, such as the unique pectines of Scorpiones and the malleoli of Solifugae. While the external morphology, numbers, and shapes of sensory organs are widely used in taxonomic studies, little is known about the internal anatomy of these organs and their associated processing neuropils in the central nervous system. Camel spiders (Solifugae) possess pedipalps and first walking legs heavily endowed with sensory structures, as well as conspicuous malleoli located ventrally on the proximal fourth walking legs. Malleoli are fan-shaped organs that contain tens of thousands of presumptive chemoreceptor neurons, but mechanoreceptive structures are absent. Results - Here, we examine the organization of the synganglion based on microCT analysis, 3D reconstruction of serial paraffin sections, and backfill preparations to trace the malleolar pathway. The projection area of malleolar afferents is intriguingly located in the most anterior ventral nerve cord, located in between the pedipalpal neuromere hemispheres. However, malleolar axon bundles are separated by a thin soma layer that points to an anteriad projection of the fourth walking leg neuromere. A conspicuous projection neuron tract that may receive additional input from pedipalpal sensory organs connects the malleolar neuropil with the mushroom bodies in the protocerebrum. Conclusion - Arthropod chemosensory appendages or organs and primary processing neuropils are typically located in the same segment, which also holds true in Solifugae, although the malleolar neuropil is partially shifted towards the pedipalpal neuromere. A comparison of the malleoli in Solifugae and the pectines in Scorpiones, and of their primary processing neuropils, reveals certain similarities, while striking differences are also evident. Similarities include the ventral arrangement of peg-shaped sensory structures on the respective segmental appendage, exposing dense arrays of chemoreceptive sensilla, and projections to a primary processing neuropil with glomerular subdivision. Differences are, e.g., the lack of mechanoreceptive afferents and an associated processing neuropil.https://zoologicalletters.biomedcentral.com/articles/10.1186/s40851-019-0137-zPublisher's versio
    corecore