12 research outputs found

    Evaluation of microflow configurations for scale inhibition and serial X-ray diffraction analysis of crystallization processes

    No full text
    The clean and reproducible conditions provided by microfluidic devices are ideal sample environments for in situ analyses of chemical and biochemical reactions and assembly processes. However, the small size of microchannels makes investigating the crystallization of poorly soluble materials on-chip challenging due to crystal nucleation and growth that result in channel fouling and blockage. Here, we demonstrate a reusable insert-based microfluidic platform for serial X-ray diffraction analysis and examine scale formation in response to continuous and segmented flow configurations across a range of temperatures. Under continuous flow, scale formation on the reactor walls begins almost immediately on mixing of the crystallizing species, which over time results in occlusion of the channel. Depletion of ions at the start of the channel results in reduced crystallization towards the end of the channel. Conversely, segmented flow can control crystallization, so it occurs entirely within the droplet. Consequently, the spatial location within the channel represents a temporal point in the crystallization process. Whilst each method can provide useful crystallographic information, time-resolved information is lost when reactor fouling occurs and changes the solution conditions with time. The flow within a single device can be manipulated to give a broad range of information addressing surface interaction or solution crystallization

    Droplet Microfluidics XRD Identifies Effective Nucleating Agents for Calcium Carbonate

    Get PDF
    The ability to control crystallization reactions is required in a vast range of processes including the production of functional inorganic materials and pharmaceuticals and the prevention of scale. However, it is currently limited by a lack of understanding of the mechanisms underlying crystal nucleation and growth. To address this challenge, it is necessary to carry out crystallization reactions in well‐defined environments, and ideally to perform in situ measurements. Here, a versatile microfluidic synchrotron‐based technique is presented to meet these demands. Droplet microfluidic‐coupled X‐ray diffraction (DMC‐XRD) enables the collection of time‐resolved, serial diffraction patterns from a stream of flowing droplets containing growing crystals. The droplets offer reproducible reaction environments, and radiation damage is effectively eliminated by the short residence time of each droplet in the beam. DMC‐XRD is then used to identify effective particulate nucleating agents for calcium carbonate and to study their influence on the crystallization pathway. Bioactive glasses and a model material for mineral dust are shown to significantly lower the induction time, highlighting the importance of both surface chemistry and topography on the nucleating efficiency of a surface. This technology is also extremely versatile, and could be used to study dynamic reactions with a wide range of synchrotron‐based techniques

    Confinement generates single-crystal aragonite rods at room temperature

    No full text
    The topic of calcite and aragonite polymorphism attracts enormous interest from fields including biomineralization and paleogeochemistry. While aragonite is only slightly less thermodynamically stable than calcite under ambient conditions, it typically only forms as a minor product in additive-free solutions at room temperature. However, aragonite is an abundant biomineral, and certain organisms can selectively generate calcite and aragonite. This fascinating behavior has been the focus of decades of research, where this has been driven by a search for specific organic macromolecules that can generate these polymorphs. However, despite these efforts, we still have a poor understanding of how organisms achieve such selectivity. In this work, we consider an alternative possibility and explore whether the confined volumes in which all biomineralization occurs could also influence polymorph. Calcium carbonate was precipitated within the cylindrical pores of track-etched membranes, where these enabled us to systematically investigate the relationship between the membrane pore diameter and polymorph formation. Aragonite was obtained in increasing quantities as the pore size was reduced, such that oriented single crystals of aragonite were the sole product from additive-free solutions in 25-nm pores and significant quantities of aragonite formed in pores as large as 200 nm in the presence of low concentrations of magnesium and sulfate ions. This effect can be attributed to the effect of the pore size on the ion distribution, which becomes of increasing importance in small pores. These intriguing results suggest that organisms may exploit confinement effects to gain control over crystal polymorph

    Polymer-Directed Assembly of Single Crystal Zinc Oxide/ Magnetite Nanocomposites under Atmospheric and Hydrothermal Conditions

    No full text
    Within the field of crystal growth it is recognized that secondary species can sometimes be occluded within a growing crystal according to the crystallization conditions and pairing of the additive and host crystal. This article takes inspiration from this phenomenon to create multifunctional inorganic nanocomposites with unique structures – inorganic single crystals containing embedded inorganic nanoparticles. Using magnetite (Fe33O4)/ ZnO as a suitable test system, ZnO crystals are precipitated from aqueous solution at 90 oC and atmospheric pressure in the presence of Fe33O4 nanoparticles functionalized with anionic diblock copolymers. Analysis of product nanocomposite crystals using atomic absorption spectroscopy shows that the Fe3O4 nanoparticles are embedded within the ZnO single crystal hosts at levels of approximately 10 wt%, while TEM analysis shows that there is no apparent discontinuity between the nanoparticles and host crystal matrix. Importantly, we then demonstrate that this occlusion approach can also be employed under hydrothermal conditions at 160 oC, without a loss in occlusion efficiency. This offers an important advance on our previous occlusion studies, which were all conducted at room temperature, and vastly increases the range of target materials that can be generated using our synthesis approach. Finally, measurement of the magnetic properties of these nanocomposites shows that they retain the attractive features of the wide band-gap semiconductor ZnO, while benefiting from added magnetism

    Rapid Preparation of Highly Reliable PDMS Double Emulsion Microfluidic Devices

    Get PDF
    This article presents a simple and highly reliable method for preparing PDMS microfluidic double emulsion devices that employs a single-step oxidative plasma treatment to both pattern the wettability of the microchannels and to bond the chips. As a key component of our strategy we use epoxy glue to define the required hydrophobic zones and then remove this after plasma treatment, but prior to bonding. This novel approach achieves surface modification and device sealing in a single process, which reduces chip preparation times to minutes and eliminates the need for unreliable coating processes. The second key element of our procedure is the maintenance of the patterned surfaces, where we demonstrate that immediate filling of the prepared device with water or the use of solvent-extracted PDMS vastly extends the operational lifetimes of the chips. The reliability of this technique is confirmed by generating water-in-oil-in-water (W/O/W) double emulsion droplets with controlled core/shell structures and volumes, and diameters as small as 55 ÎŒm. Its versatility is shown by simply using a different placement of the epoxy glue on the same chip design to create oil-in-water-in-oil (O/W/O) double emulsion droplets. Both W/O/W and O/W/O double emulsion droplets can therefore be created from the same soft-lithography mould. This simple method overcomes one of the key problems limiting the wider use of double emulsions – lack of reliability – while its speed and simplicity will facilitate the high-throughput production of monodisperse double emulsions. It could also be readily extended to produce microfluidic chips with more complex hydrophilic and hydrophobic patterns

    Exploiting Confinement to Study the Crystallization Pathway of Calcium Sulfate

    No full text
    Characterizing the pathways by which crystals form remains a significant challenge, particularly when multiple pathways operate simultaneously. Here, an imaging-based strategy is introduced that exploits confinement effects to track the evolution of a population of crystals in 3D and to characterize crystallization pathways. Focusing on calcium sulfate formation in aqueous solution at room temperature, precipitation is carried out within nanoporous media, which ensures that the crystals are fixed in position and develop slowly. The evolution of their size, shape, and polymorph can then be tracked in situ using synchrotron X-ray computed tomography and diffraction computed tomography without isolating and potentially altering the crystals. The study shows that bassanite (CaSO4 0.5H2O) forms via an amorphous precursor phase and that it exhibits long-term stability in these nanoscale pores. Further, the thermodynamically stable phase gypsum (CaSO4 2H2O) can precipitate by different pathways according to the local physical environment. Insight into crystallization in nanoconfinement is also gained, and the crystals are seen to grow throughout the nanoporous network without causing structural damage. This work therefore offers a novel strategy for studying crystallization pathways and demonstrates the significant impact of confinement on calcium sulfate precipitation, which is relevant to its formation in many real-world environments

    Effect of Nanoscale Confinement on the Crystallization of Potassium Ferrocyanide

    Get PDF
    Many crystallization processes of great significance in nature and technology occur in small volumes rather than in bulk solution. This article describes an investigation into the effects of nanoscale confinement on the crystallization of the inorganic compound potassium ferrocyanide, K4Fe(CN)6 (KFC). Selected for study due to its high solubility, rich polymorphism, and interesting physical properties, K4Fe(CN)6 was precipitated within controlled pore glasses (CPG) with pore diameters of 8, 48, and 362 nm. Remarkable effects were seen, such that although anhydrous potassium ferrocyanide was never observed on precipitation in bulk aqueous solution, it was the first phase to crystallize within the CPGs and was present for at least 1 day in all three pore sizes. Slow transformation to the metastable tetragonal polymorph of the trihydrate K4Fe(CN)6·3H2O (KFCT) then occurred, where this polymorph was stable for a month in 8 nm pores. Finally, conversion to the thermodynamically stable monoclinic polymorph of KFCT was observed, where this phase was always found after a few minutes in bulk solution. As far as we are aware these retardation effects—by up to 5 orders of magnitude in the 8 nm pores—are far greater than any seen previously in inorganic systems and provide strong evidence for the universal effects of confinement on crystallization

    Droplet Microfluidics XRD Identifies Effective Nucleating Agents for Calcium Carbonate

    No full text
    The ability to control crystallization reactions is required in a vast range of processes including the production of functional inorganic materials and pharmaceuticals and the prevention of scale. However, it is currently limited by a lack of understanding of the mechanisms underlying crystal nucleation and growth. To address this challenge, it is necessary to carry out crystallization reactions in well‐defined environments, and ideally to perform in situ measurements. Here, a versatile microfluidic synchrotron‐based technique is presented to meet these demands. Droplet microfluidic‐coupled X‐ray diffraction (DMC‐XRD) enables the collection of time‐resolved, serial diffraction patterns from a stream of flowing droplets containing growing crystals. The droplets offer reproducible reaction environments, and radiation damage is effectively eliminated by the short residence time of each droplet in the beam. DMC‐XRD is then used to identify effective particulate nucleating agents for calcium carbonate and to study their influence on the crystallization pathway. Bioactive glasses and a model material for mineral dust are shown to significantly lower the induction time, highlighting the importance of both surface chemistry and topography on the nucleating efficiency of a surface. This technology is also extremely versatile, and could be used to study dynamic reactions with a wide range of synchrotron‐based techniques

    Heterogeneous reaction of HO₂ with airborne TiO₂ particles and its implication for climate change mitigation strategies

    Get PDF
    One geoengineering mitigation strategy for global temperature rises resulting from the increased concentrations of greenhouse gases is to inject particles into the stratosphere to scatter solar radiation back to space, with TiO₂ particles emerging as a possible candidate. Uptake coefficients of HO₂, Îł (HO2), onto sub-micrometre TiO₂ particles were measured at room temperature and different relative humidities (RHs) using an atmospheric pressure aerosol flow tube coupled to a sensitive HO₂ detector. Values of Îł (HO2) increased from 0.021 ± 0.001 to 0.036 ± 0.007 as the RH was increased from 11 to 66 %, and the increase in Îł (HO₂) correlated with the number of monolayers of water surrounding the TiO₂ particles. The impact of the uptake of HO₂ onto TiO₂ particles on stratospheric concentrations of HO₂ and O₃ was simulated using the TOMCAT three-dimensional chemical transport model. The model showed that, when injecting the amount of TiO₂ required to achieve the same cooling effect as the Mt Pinatubo eruption, heterogeneous reactions between HO₂ and TiO₂ would have a negligible effect on stratospheric concentrations of HO₂ and O₃
    corecore