21 research outputs found

    Finite-difference time-domain analysis of ELF radio wave propagation in the spherical Earth鈥搃onosphere waveguide and its validation based on analytical solutions

    Get PDF
    The finite-difference time-domain (FDTD) model of electromagnetic wave propagation in the Earth鈥搃onosphere cavity was developed under assumption of an axisymmetric system, solving the reduced Maxwell equations in a 2D spherical coordinate system. The model was validated on different conductivity profiles for the electric and magnetic field components for various locations on Earth along the meridian. The characteristic electric and magnetic altitudes, phase velocity, and attenuation rate were calculated. We compared the results of numerical and analytical calculations and found good agreement between them. The undertaken FDTD modeling enables us to analyze the Schumann resonances and the propagation of individual lightning discharges occurring at various distances from the receiver. The developed model is particularly useful when analyzing ELF measurements.</p

    Subtraction of correlated noise in global networks of gravitational-wave interferometers

    Get PDF
    The recent discovery of merging black holes suggests that a stochastic gravitational-wave background is within reach of the advanced detector network operating at design sensitivity. However, correlated magnetic noise from Schumann resonances threatens to contaminate observation of a stochastic background. In this paper, we report on the first effort to eliminate intercontinental correlated noise from Schumann resonances using Wiener filtering. Using magnetometers as proxies for gravitational-wave detectors, we demonstrate as much as a factor of two reduction in the coherence between magnetometers on different continents. While much work remains to be done, our results constitute a proof-of-principle and motivate follow-up studies with a dedicated array of magnetometers

    Measurement and subtraction of Schumann resonances at gravitational-wave interferometers

    Get PDF
    Correlated magnetic noise from Schumann resonances threatens to contaminate the observation of a stochastic gravitational-wave background in interferometric detectors. In previous work, we reported on the first effort to eliminate global correlated noise from the Schumann resonances using Wiener filtering, demonstrating as much as a factor of two reduction in the coherence between magnetometers on different continents. In this work, we present results from dedicated magnetometer measurements at the Virgo and KAGRA sites, which are the first results for subtraction using data from gravitational-wave detector sites. We compare these measurements to a growing network of permanent magnetometer stations, including at the LIGO sites. We show the effect of mutual magnetometer attraction, arguing that magnetometers should be placed at least one meter from one another. In addition, for the first time, we show how dedicated measurements by magnetometers near to the interferometers can reduce coherence to a level consistent with uncorrelated noise, making a potential detection of a stochastic gravitational-wave background possible

    ELF propagation parameters for the ground-ionosphere waveguide with finite ground conductivity

    No full text
    In the extremely low frequency (ELF) range, the space between the ground and ionosphere forms a spherical waveguide. When studying the ELF radio-wave propagation on Earth using analytical models, it is commonly assumed that the ground has perfect conductivity. In some planetary applications, the ground conductivity is so low that it has a significant influence on the radio-wave propagation in the ELF range and it has to be included in the model. This issue has not been resolved in a satisfactory way yet. In this paper, we analyze the penetration of the ground by an electromagnetic wave traveling along the surface and we propose a solution that allows including ground parameters in the frequently used 2-D analytical model of the ground-ionosphere waveguide. The presented calculations show that in most cases on Earth, the differences with such a model are small, up to a few percent for phase velocity

    The Accuracy of Radio Direction Finding in the Extremely Low Frequency Range

    Get PDF
    In this work, we study the accuracy of direction finding in the extremely low frequency (ELF) range using a newly installed broadband receiver equipped with two active magnetic antennas. The main natural source of ELF radio waves is lightning. In this work, we analyzed 1000 atmospheric discharges at distances of up to 5000聽km from the receiver. We identified the most important factors influencing the accuracy of the angle of arrival: the deviation of the radio waves propagating through the day-night terminator zone and the signal-to-noise ratio resulting from local electromagnetic noise and Schumann resonance background. The obtained results clearly show that the accuracy of estimating the direction of arrival is very high (an average error of 0.1掳 with the standard deviation of 2.3掳) when the signal-to-noise ratio is large (the amplitude of the magnetic field component above 100聽pT), except for short periods in the local morning and evening, when the day-night terminator is present on the propagation path of the direct wave. For the day-night propagation paths, the refraction angle was larger than the incidence angle, and for the night-day propagation paths, the refraction angle was smaller than the incidence angle, which is consistent with theory. Using our analytical ELF radio propagation model allowed us to explain the obtained results.Fil: Mlynarczyk, Janusz. AGH University of Science and Technology; PoloniaFil: Kulak, Andrzej. AGH University of Science and Technology; PoloniaFil: Salvador, Jacobo Omar. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Unidad de Investigaci贸n y Desarrollo Estrat茅gico para la Defensa. UNIDEF - Observatorio Atmosf茅rico de la Patagonia Austral | Ministerio de Defensa. Unidad de Investigaci贸n y Desarrollo Estrat茅gico para la Defensa. UNIDEF - Observatorio Atmosf茅rico de la Patagonia Austral; Argentin

    Novel analysis of a sudden ionospheric disturbance using Schumann resonance measurements

    No full text
    A spherical cavity between Earth and the lower ionosphere forms a global resonator for Extremely Low Frequency electromagnetic waves. Constant thunderstorm activity leads to the formation of a resonance field in the cavity, known as the Schumann resonance. Solar flare generated Sudden Ionospheric Disturbances (SID) modify the ionosphere affecting the ground-based radio communication systems. They are also expected to modify radiowave propagation in the cavity. In this paper, the Schumann Resonance spectral decomposition method is used for the first time to study the cavity resonance frequencies during the SID accompanying a strong X2.1 solar flare. We analyzed rapid changes in the frequencies and Q factors of the first five resonance modes using a 5鈥塵in timescale. The observed frequency shifts were compared to the ionizing solar flare fluxes in the UV, X-ray, and high-energy gamma rays

    Analysis of ELF electromagnetic field pulses recorded by the Hylaty station coinciding with terrestrial gamma-ray flashes

    No full text
    Terrestrial gamma-ray flashes (TGFs) were registered the first time by the NASA's Compton Gamma Ray Observatory. The physical mechanism of TGF generation is not fully known, but there is a consensus among researchers that the radiation is produced by bremsstrahlung of relativistic electrons in the thunderstorm regions of the atmosphere. Therefore, TGFs have been linked to positive-polarity intracloud lightning discharges, strong positive cloud-to-ground discharges or upward discharges from a thundercloud top. The currently operating Fermi Gamma-ray Space Telescope is equipped with a Gamma-ray Burst Monitor that can detect terrestrial gamma-ray flashes. It opens up a new possibility to search for lightning discharges responsible for TGFs. Ground-based lightning monitoring systems in the ELF, LF and VLF ranges can be used for that purpose. The ELF systems are especially useful, since they provide a large monitoring range of several thousand kilometers for strong atmospheric discharges (charge moments above several tens of C km). In this paper we have described the data analysis method for ELF electromagnetic field pulses and applied it to study our first examples of TGFs registered by Fermi GBM coinciding with ELF pulses recorded by the Hylaty ELF station located in the Carpathian Mountains in Poland. Using our ELF electromagnetic wave propagation model we have evaluated charge moments for the two registered events to be 320 and 110 C km and provided upper limits for the remaining events

    An unusual sequence of sprites followed by a secondary TLE : An analysis of ELF radio measurements and optical observations

    Get PDF
    We present an extraordinary case of sprites in rapid succession鈥揻our sprite clusters in only 400鈥塵s鈥揻ollowed by a secondary jet. Simultaneous ELF and optical observations, as well as lightning data, enabled us to thoroughly document this unique event. Locations of the transient luminous events (TLEs) were triangulated using video recordings from Nydek (Czech Republic) and Sopron (Hungary). We found that sprites were displaced up to 70鈥塳m from their parent lightning. The current moment waveform and charge moment changes associated with the event were reconstructed from the ELF electromagnetic signature recorded at the Hylaty station (Poland) by a new method. The results suggest that both a short-delayed and a long-delayed sprite were generated by a single positive cloud-to-ground discharge that had an intense continuing current. It had an unusual progression and lasted 200鈥塵s. A large increase in the current moment during the development of a massive carrot sprite provides evidence in favor of sprite current. Our results also support the formation of an electric environment hypothesized to be necessary for the generation of the secondary TLEs
    corecore