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Abstract Wepresent an extraordinary case of sprites in rapid succession—four sprite clusters in only 400ms
—followed by a secondary jet. Simultaneous ELF and optical observations, as well as lightning data, enabled us
to thoroughly document this unique event. Locations of the transient luminous events (TLEs) were triangulated
using video recordings from Nydek (Czech Republic) and Sopron (Hungary). We found that sprites were
displaced up to 70 km from their parent lightning. The current momentwaveform and chargemoment changes
associated with the event were reconstructed from the ELF electromagnetic signature recorded at the Hylaty
station (Poland) by a newmethod. The results suggest that both a short-delayed and a long-delayed sprite were
generated by a single positive cloud-to-ground discharge that had an intense continuing current. It had an
unusual progression and lasted 200ms. A large increase in the current moment during the development of a
massive carrot sprite provides evidence in favor of sprite current. Our results also support the formation of an
electric environment hypothesized to be necessary for the generation of the secondary TLEs.

1. Introduction

Transient luminous events (TLEs) are spectacular optical phenomena that occur above the clouds during
thunderstorms [Rodger, 1999; Inan, 2002; Mishin and Milikh, 2008; Inan et al., 2010; Pasko, 2010; Pasko et al.,
2012; Surkov and Hayakawa, 2012; Siingh et al., 2012; Ebert and Sentman, 2008]. Since their discovery [Franz
et al., 1990], several types of TLEs have been documented and classified: sprites, blue jets, elves, gigantic jets,
and others [Sentman et al., 1995a, 1995b; Fukunishi et al., 1996; Su et al., 2003]. They have various shapes,
sizes, and colors [Lyons et al., 2003; Williams, 2001; Neubert et al., 2008]. The mechanism of TLE generation
is still not fully understood, but it is known to be closely linked with intense as well as impulsive charge
separation and charge transfer processes in the troposphere [Pasko et al., 2012]. Existing theoretical models
are based on many optical observations from low-light cameras. These optical observations, however, are
not always accompanied by reliable information on the current moment variation of the corresponding
charge transfer processes, although this information is necessary to validate and improve the models.

In this paper, we analyze an unusual event that consisted of a sequence of sprites followed by a secondary
TLE (a troll) in rapid succession. Secondary TLEs (also named crawlers, emblers, trolls, or secondary jets
in the literature) [Moudry, 2003; Marshall and Inan, 2007] differ from “regular” TLEs—such as sprites and
blue/gigantic jets—in that they develop in an electric environment which is preconditioned by a preceding
sprite event. Forming such secondary TLEs is hypothesized to require the simultaneous presence of a
lowered ionospheric potential (due to previous sprite currents) and a high concentration of charge in the
thundercloud [Lee et al., 2012], which occurs infrequently.

The TLEs considered in this paper were generated by intense lightning activity in a thunderstorm that moved
across central Europe on 6 August 2013. We have analyzed extremely low frequency (ELF) radio recordings
associated with the ground-based optical observations. Our ELF station was located only about 670 km away
from the thunderstorm. Since the attenuation of ELF radio waves in the Earth-ionosphere waveguide is very low
[Kulak andMlynarczyk, 2013], such a distance can be considered short and enables the collection of high-quality
waveforms (waveforms with high signal-to-noise ratios). Based on the recorded signal, we have reconstructed
the complete current moment waveform of the TLE-associated discharges and calculated the charge moment
change. To reconstruct the current moment waveform, a new method based on Kułak and Młynarczyk [2011]
was used. This improved method makes it possible to avoid convolution, and it facilitates signal processing.
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2. The Instrumentation and Radio Recordings

The ELF electromagnetic signature of the event was recorded by the Hylaty ELF station located in a sparsely
populated area of the Bieszczady Mountains (49.204°N, 22.544°E) in Poland [Kulak et al., 2014]. In this study,
we use the data recorded by a receiver that has a frequency bandwidth of 0.03 to 52Hz and a sampling
frequency of 176Hz. The receiver continuously measures two magnetic field components: NS (north-south)
and EW (east-west).

The video images were recorded simultaneously at two sites: at Nydek, Czech Republic (49.668°N, 18.769°E)
and at Sopron, Hungary (47.6837°N, 16.5830°E) [Sátori et al., 2013]. The average distances from the recorded
events were about 400 km and 320 km, respectively.

Figure 1 shows the locations of the observation sites and the region where the sequence of transient
luminous events occurred. We also present the location of the positive cloud-to-ground (+CG) discharges
that had the largest maximum current inferred from the VLF measurements (provided by LINET, Nowcast
GmbH) [Betz et al., 2009] and the largest amplitude in the ELF recordings (which translates into the highest
current moments).

Figure 2 shows the ELF electromagnetic signature of the event recorded from twomagnetic antennas, NS and
EW, on 6 August 2013 at 22:34 UTC, after the propagation delay and receiver delay were subtracted. The
average azimuth from the Hylaty ELF station to the discharge location was close to 270°. Therefore, the NS
antenna was nearly perpendicular to the direction of propagation, and the +CG discharges are clearly visible

Figure 1. Location of the Hylaty ELF station and the cameras (Nydek and Sopron), as well as the location of the region
where the sequence of TLEs occurred. The average distance from this region to the Hylaty ELF station was 670 km. The
strongest +CG discharges, which played a major role in triggering sprites, are marked with plus signs and serial numbers
(see Table 1 for details).

Figure 2. (left) Magnetic field components of the radio wave registered at the Hylaty ELF station by the north-south
(red line) and east-west (blue line) antennas on 6 August 2013 at 22:34 UTC. The strongest +CG discharges are
indicated by plus signs with serial number. (right) Lissajous pattern for the measured magnetic field components.
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in the NS antenna but nearly invisible in the EW antenna. Negative amplitude in the plot in Figure 2 indicates
the sources of positive polarity, e.g., positive cloud-to-ground discharges.

The video recordings at Nydek weremade usingWatec 910HX camera equipped with Computar 3.5–10.5mm
(F/1.0) lens. The recordings at Sopron were made with Watec 902H2 Ultimate with Computar 8mm (F/0.8)
lens. At both sites, video frames were recorded in 720 × 576 pixel optical resolution and at 50 video fields per
second (deinterlaced) so that the effective time resolution at each site was 20ms. The effective horizontal
field of view is 45° in Sopron and 37° in Nydek. At Sopron station, a GPS video time inserter provided
information on the start and end times of exposition period of each video field with millisecond accuracy.
Both sites utilized the UFOCapture event detection and analyzer software package to capture transient
optical phenomena and to process the records.

3. Analysis of Optical Records

The complex sequence of events analyzed in this paper can be divided into five parts, i.e., four sprite clusters
followed by the troll. Because of the availability of simultaneous optical observations, the location and horizontal
extension of each sprite cluster could be determined by triangulation. The location of the troll jet and some

Figure 3. Selected video fields recorded at Sopron. Field number 1 (F1) was recorded at 22:34:06.969 UTC (±10ms),
and the following numbers correspond to 20ms video fields. The capital letters identify various elements of the sprite
clusters—their location can be followed on the map in Figure 3. (top) The first part of the recording. The same parts of
the original video images were kept when cropping the pictures to preserve the relative position change of the sprites.
(bottom) The second part of the recording. The same parts of the original images were kept for all the video fields in this
panel, but they are different than in the top to keep the pictures small.
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individual sprite entities was triangulated,
too, when the actual sprite entity could
be unambiguously identified in both
video records. To perform triangulation,
the direction of selected characteristic
points of the emissions was determined
by finding the orientation of the image
frame. The direction of the normal of the
image plane was found by matching the
stars in the field of view with the star
chart at the time of observation using the
UFOAnalyzer software. In Nydek,
matching of the star chart was based on
41 stars, and the average and maximum
deviations of recorded star directions
from the corresponding directions in
the star catalog were 0.012° and 0.039°,
respectively. In Sopron, matching of the
star chart was based on 22 stars, and
the average and maximum direction
deviations were 0.014° and 0.039°,
respectively. Note that the number of
stars available for direction finding
depends both on the sensitivity of the
recording systems (e.g., type of hardware
and gain settings) and on local viewing
conditions (e.g., light pollution and the
level of atmospheric scattering). The
accuracy of the triangulated locations is
limited by the accuracy of the direction
finding as well as by the finite optical
resolution of the images. Additional
uncertainty of the determined locations
comes from the ambiguity in selecting
the center and/or the edges of the
emissions which do not have sharp

boundaries and can be somewhat out of focus too. An offset of 1 pixel corresponds to a 0.052° difference in
Sopron and 0.041° in Nydek. Taking into account these factors as well as the distance of the events from the
observation sites, we can say that true locations are supposed to be within a range of maximum 2km
of the triangulated locations.

The sequence of optical events can be followed in Figures 3 and 4. Figure 3 contains selected deinterlaced
video fields of the event as recorded in Sopron, while triangulated locations are plotted in Figure 4. The
sequence started with a very dim sprite halo at 22:34:06.949 UTC (±10ms). Elements of the first cluster of
sprites appeared together on the next video field (field 1; Figure 3). The cluster contained seven sprite entities
of different types: columns, carrots, and trees. Note that we used the morphological classes discussed in
details by Bór [2013] at the categorization of sprite entities according to their shape.

The appearance of the second set of sprites (video fields 4–7; Figure 3) cannot be unambiguously separated
from the first cluster. The appearances of the entities closely followed one another, and the newer elements
showed up laterally displaced from the earlier elements. Such a sequence of events is called “dancing”
sprites in the literature [Lyons, 1994, 1996]. From 22:34:07.009 UTC (±10ms, field 4; Figure 3), new sprite
elements kept appearing on each new video field until field 7. Newer sprite entities appeared to the north
of the previous entities. The shape of these sprites was again diverse. This cluster of dancing elements
contained more than 10 sprite entities. Despite of the simultaneous observations from two sites, the

Figure 4. Triangulated locations of individual sprites (circles), triangulated
areas of selected sprite groups (dashed lines), and locations of lightning
flashes detected by LINET. The capital letters identify the emissions in
Figure 3. The triangulated location of the troll jet is marked with a circle
with a black outline. The numbers identify the lightning strokes in Table 1.
The +CGs (cross), �CGs (minus sign), +ICs (triangle), and �ICs (inverted
triangle) are plotted. Time is color coded. For the TLEs, the color
corresponds to the time of the first appearance recognized in the
video. (Larger sprites for which more entities could be triangulated
individually are indicated with larger circles. The three largest crosses
indicate the three strongest +CG discharges: 1, 11, and 20.)
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number of elements could not be determined unambiguously because of the densely packed cluster of
many sprite entities (some of which were vertically tilted) and due to overlapping morphological features
like glows, beads, and puffs. It must be noted that explicit beading could be observed in almost all sprite
entities, even in columns and wishbones which has not been frequently observed at conventional frame
rates. The lastly appearing large bright carrot was visible only for a single video field (≤20ms). From this
group, a previously appearing set of column sprites remained visible for the longest time (4 fields, 80ms,
from 22:34:07.049 to 22:34:07.129 UTC, ±10ms).

The vanishing of those columns was followed by an 80ms pause. Then, a closely packed group of two
carrots and at least four other entities (columns and wishbones) appeared at 22:34:07.229 UTC (±10ms,
video field 14; Figure 3) to the north of the previous sprites. On the next video field, a great part of this
cluster disappeared, while some emissions remained bright. On the following video field, 20ms later, the
last cluster of sprites appeared farther to the north. This cluster consisted of a large tree sprite and three to
four columns (video field 16; Figure 3). The last optical remnants of these latter two clusters disappeared
practically at the same time, i.e., at around 22:34:07.309 UTC (±10ms).

Right after this, on the next video field (number 20; Figure 3) recorded at 22:34:07.329 UTC (±10ms), the troll
appeared practically below the third sprite cluster under the tendril region of one of the carrots. The troll was
recorded on two video fields (40ms) from Nydek and on three video fields (60ms) from Sopron. The first two
video fields (20 and 21; Figure 3) clearly show an upward development of the jet with its streamer channel
remaining visible. On the second video field, a brighter spot could be observed along the upper part of the
streamer channel. The top of the channel was also bright. By the third field, the streamer channel and the
bright spots had disappeared, and only the very top of the channel was still faintly visible at the same height.

4. Lightning Activity and Optical Emissions

Table 1 contains information on lightning strokes above the area of themap in Figure 4 between 22:34:06.950
and 22:34:07.400 UTC on 6 August 2013. Figure 4 shows the LINET-reported location and time of these
lightning strokes together with the triangulated locations of the emissions projected on the ground.

Table 1. Lightning Strokes Detected by LINET Above the Area Covered by the Map in Figure 4a

Serial Time (UTC) Longitude Latitude Type Imax (kA)

1 22:34:06.956 13.4445 48.3787 CG 81.8
2 22:34:07.040 13.3198 48.7563 CG 5.8
3 22:34:07.071 13.3569 48.9771 CG 5.4
4 22:34:07.073 13.3458 48.9915 CG 6.8
5 22:34:07.131 13.8154 48.7257 CG 5.4
6 22:34:07.149 13.5703 48.7438 IC 4.6
7 22:34:07.171 13.5688 48.7462 IC 6.3
8 22:34:07.186 13.5179 48.6625 IC 6.9
9 22:34:07.199 13.5281 48.6351 CG �5.6
10 22:34:07.210 13.5794 48.6198 CG �5.3
11 22:34:07.218 13.6803 48.9166 CG 37.7
12 22:34:07.241 13.6073 48.9120 IC �3.9
13 22:34:07.244 13.2315 49.3476 CG 11.6
14 22:34:07.248 13.4205 48.9672 CG �8.5
15 22:34:07.249 13.6909 48.9027 IC 5.6
16 22:34:07.250 13.5360 48.8885 CG 4.7
17 22:34:07.251 13.4609 48.4716 CG 5.7
18 22:34:07.258 13.3540 48.9977 CG 5.7
19 22:34:07.261 13.7381 49.0504 CG 4.7
20 22:34:07.266 13.3663 49.0167 CG 17.4
21 22:34:07.267 13.5052 48.6589 IC �4.8
22 22:34:07.279 13.1463 48.8475 IC �5.2
23 22:34:07.338 13.2046 48.8182 IC �8.2
24 22:34:07.360 13.2139 48.8145 CG �7.2
25 22:34:07.368 13.3878 48.8072 CG �7.6
26 22:34:07.385 13.2149 48.8182 CG �6.3

aThe three most powerful strokes (also displayed in Figure 1) are set in bold.
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Convective cells of the thunderstorm
generally moved northeast near
the occurrence time of the event
considered in this study. The examined
sequence of sprites, however, was
generated by lightning activity in the
trailing region of the thunderstorm,
in which a northward drift was
dominant at that time. This is well
mirrored in the distribution and time
evolution of lightning activity shown
in Figure 5.

Considering the vicinity of the analyzed
events, the region of lightning
activity in general moved northward
both in time and in space more or less
synchronously with the appearing
emissions, up to 22:34:07.266 UTC
(Figure 4). Four +CG strokes with
peak currents higher than 10 kA
occurred in this period. These strokes
were accompanied by several lightning
strokes with smaller peak current
(both CGs and intracloud (IC)) of
dominantly positive polarity. All
of the four negative strokes in this
period occurred close (in time) to
two larger peak current +CGs around
22:34:07.218 UTC. After the last bigger
peak current +CG at 22:34:07.266 UTC,
however, the detected lightning
activity occurred only below 49.0°
latitude and consisted of only negative

polarity IC and CG strokes. No lightning stroke with a peak current higher than 10 kA was recorded in
the region after this.

5. The Method for Reconstructing the Current Moment Waveform

The signal recorded by a receiver depends on the signal generated by the source, the transfer function of the
propagation channel, and the transfer function of the receiving system. The first transfer function describes
how the amplitude and phase of the radio wave change as it propagates from the source to the receiver’s
location. The second transfer function determines the amplitude and phase changes introduced by the
receiving system.

This principle can be applied to any radio measurements. In this paper we apply it to the recordings of the
magnetic field component of ELF radio waves generated by atmospheric discharges. Considering the signal
in the frequency domain, we can write [Kułak and Młynarczyk, 2011]

B fð Þ ¼ s fð Þ w fð Þ g fð Þ T=Hz½ �; (1)

where B fð Þ is the spectrum of the recorded magnetic field component of the radio wave, s fð Þ is the spectral
density of the source current moment, w fð Þ in our case is the transfer function of the Earth-ionosphere
waveguide, and g fð Þ is the transfer function of the ELF receiving system. All these parameters are complex,
which we denote by macron above the letter.

Figure 5. CG and IC lightning stroke locations detected by LINET. Time is
color coded. The dashed magenta lines mark the area covered by
Figure 4. The dotted magenta lines mark the latitude and longitude
regions of 48.2–49.7 N, 12.6–14.0 E, in which lightning activity was more
closely examined. See the corresponding text in the Discussion section.
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The basic concept of our method is similar to that described by Cummer and Inan [2000] and Kułak and
Młynarczyk [2011] in that it enables the reconstruction of an arbitrary current moment waveform from an ELF
recording and obtain full information on the progression of the charge moment change during the event.
The other well-known methods [Jones, 1970; Burke and Jones, 1996; Sentman, 1996; Huang et al., 1999], which
were also used in some recent papers on TLEs [Soula et al., 2011;Williams et al., 2007, 2012], require assuming
an exponentially decaying current moment and, as it will become clear later, cannot be used for the case
presented in this paper.

In order to reconstruct the current moment waveform, we have to take into account the radiowave propagation
in the Earth-ionosphere waveguide and the influence of the receiver transfer function. Cummer and Inan [2000]
calculated the impulse response of the propagation channel and reconstructed the current moment
waveform by deconvolution. Li et al. [2008] used a modified version of this method to calculate the current
moment waveform of sprites; they applied regularization parameters that enforce more smoothness on the
later part of the current moment waveform. To avoid deconvolution-related issues, Kułak and Młynarczyk
[2011] calculated the impulse response of the inverse channel and convolved it with the recorded waveform
to obtain the current moment waveform.

In this paper, we avoid both convolution and deconvolution, making this method easy to implement. After
obtaining all of the required parameters, as shown later in this section, we compute the spectrum of
the current moment waveform, s fð Þ, from equation (1), and we obtain the current moment waveform s (t)
by returning with s fð Þ to the time domain, using the inverse Fourier transform. All the calculations
are implemented for the frequencies up to the Nyquist frequency (i.e., half of the sampling frequency of
our ELF station). To obtain good resolution in the time domain for the current moment waveform, we
work on two-sided spectra. (In order to convert one-sided spectrum to two-sided spectrum for a function
calculated or measured only for positive frequencies, such as the receiver transfer function g fð Þ, we use
the complex conjugate).

Note that the method automatically removes the propagation delay of the Earth-ionosphere waveguide and
the delay introduced by the receiver.

The transfer function of the Earth-ionosphere waveguide can be obtained from one of the well-known
propagation formulas. In this paper, we use the equation presented by Kułak and Młynarczyk [2011], which
is based on Banister’s formula [Casey, 2002] and was derived analytically from the Maxwell equations for a
vertical electric dipole placed in the Earth-ionosphere waveguide. It is well suited for calculating ELF radio
wave propagation on relatively short distances, such as with the case shown in this paper. The transfer
function w fð Þ is given by [Kułak and Młynarczyk, 2011]

w fð Þ ¼ �i
πμ0f

2hm fð Þvph fð ÞH
2ð Þ
1 2πr

f
νph fð Þ

� �
e�α fð Þ r T

A�m
� �

; (2)

where hm(f ) is the magnetic altitude of the Earth-ionosphere waveguide, νph(f ) is the phase velocity of the
electromagnetic wave in the waveguide, H 2ð Þ

1 is the Hankel function of the second kind with order 1, r is the
distance from the source, and α(f ) is the attenuation rate of the waveguide.

In order to implement equation (2), we need to know the propagation parameters of the Earth-ionosphere
waveguide. The phase velocity νph(f ) and the attenuation rate α(f ) can be obtained from [Mushtak and
Williams, 2002]

vph fð Þ ¼ c

ReSo fð Þ ; (3)

α fð Þ ¼ ω
c
Ιm So fð Þ; (4)

where So fð Þ is the complex propagation parameter. It can be estimated from the equation [Mushtak and
Williams, 2002]

So
2
fð Þ ¼ hm fð Þ

he fð Þ ; (5)
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where hm fð Þ and he fð Þ are the complex magnetic and electric altitudes of the Earth-ionosphere waveguide.
A detailed description of the complex propagation parameter and the complex altitudes can be found in
Kulak et al. [2013].

The complex electric altitude can be calculated from the equations developed by Greifinger et al. [2007] and
the magnetic altitude from the equations obtained by Kułak and Młynarczyk [2011, equation (9)] and Kulak
et al. [2012, equation (11)] for the nighttime and daytime paths, respectively. These equations have shown a
very good agreement with experimental data [Kulak and Mlynarczyk, 2013].

In order to calculate the spectral density of the current moment s fð Þ from the recorded magnetic field

component B fð Þ using equation (1), we need to know one more parameter: the transfer function of the
receiving system, g fð Þ. The measurement system should be calibrated; therefore, its transfer function should
be known in its entire frequency range.

A practical implementation of the presented method may require one more step. Many ELF systems,
including the one we use, have two antennas: one directed north-south and the other east-west. In most
cases, none of them is perpendicular to the direction of propagation. Therefore, we have to obtain the

azimuthal magnetic field component, B fð Þ, required by equation (1), from the magnetic field component
recorded by the two antennas.

This can be done by a rotation of the coordinate system. For the given rotation angle α and a clockwise
rotation, we can write

B

Bjj

" #
¼ cos αð Þ sin αð Þ

�sin αð Þ cos αð Þ

� �
Bx

By

" #
: (5)

Once the rotation is performed, we obtain the azimuthal magnetic field component with positive amplitude
for +CG discharges. The rotation can be performed directly on the signal sampled in the time domain. Then

we used the Fourier transform to calculate B fð Þ from B.

It should be stressed that the propagation models play an important role in estimating the amplitude of the
current moment waveform. The method for reconstructing the current moment waveform shown in this
paper is universal and enables us to use other models [e.g., Jones, 1970; Sentman, 1996; Mushtak and
Williams, 2002]. However, we believe that the propagation formula used in this paper is well suited for
calculating the magnetic field component of the radio waves at relatively short distances, such as in
the case analyzed in this paper. The charge moment change (CMC) for cloud-to-ground return strokes
obtained from our ELF records using this propagation formula have been recently compared with the
CMCs derived from electrostatic analysis of electric field changes recorded by a network of VLF stations
close to lightning locations, and a good correlation was obtained—the Pearson’s cross-correlation
coefficient for the negative return strokes was equal to 0.80 [Nieckarz et al., 2015].

6. Results of Current Moment and Charge Moment Calculation

Figure 6 (top) shows the calculated current moment waveform. The parts of the waveform associated with
video fields containing sprites are indicated with red lines. The troll video fields are indicated with a magenta
line. The +CG discharges that played a major role in triggering sprites are marked with plus signs.

The first part of the current moment waveform has an unusual shape. It coincides with the dancing sprite
event shown in Figure 3 (video fields 1 to 9), composed of two distinct clusters of sprites. After the return
stroke of the first +CG discharge, which initiated the sequence (“+1” in Figure 6), the current did not decrease
exponentially but remained at a quite high but constant level for about 80ms. During this time, the first sprite
cluster slowly vanished in the video recordings. Next, the current started to rise progressively, and the second
cluster of sprites started to develop in the video recordings. The current moment reached the second
maximum during video field 7. Then the current slowly decreased, reaching zero about 40ms after the
sprite cluster was no longer visible in the recordings. The first part of current moment waveform has some
similarities to the current moment waveform presented by Li et al. [2008]. In their case, the amplitude of the
first peak was about twice larger (~200 kA versus 90 kA), but then the amplitude decreased to about twice
smaller value (roughly 20 kA versus 40 kA in our case), and then it increased to about 150 kA versus 75 kA in
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our case. The second peak in the current moment waveform in their case was ~145ms after the first +CG, and
in our case, it was after 125ms.

After a short pause of about 40ms, there was another strong +CG discharge and another cluster of sprites
(the second part of the waveform, “+11” in field 14). The current dropped much faster than after the first +CG
discharge, but before it settled, yet another strong +CG and sprite cluster appeared (video field 16 in
Figures 3 and 6). This time, the current decreased more slowly, and before it settled, the troll jet appeared.

Signature of the next relatively strong +CG discharge of +18 kA peak current in this region is clearly visible in
Figure 6, about 510ms after the first +CG. Although it had a fairly slow current decay rate, our cameras did not
record any TLE at that time.

Figure 6 (bottom) shows the vertical charge moment change (CMC) obtained by integration of the current
moment waveform.

The charge moment change during the first part of the sequence (up to video field 10) was 7900 C km. This
includes 700 C km associated with the return stroke of the first +CG discharge, 3200 C km associated with
continuing current recorded during the first cluster of sprites (video fields 1 to 3), and 4100 C km during the
second cluster of sprites (video fields 5 to 9).

The second part of the sequence started with a strong +CG discharge (second plus sign in Figure 6). Its return
stroke had the charge moment change of 500C km, and its continuing current during video fields 14 and 15
was 1700C km. The charge moment change during video fields 16–19 (last sprite cluster) was 3000C km. The
CMC integrated during the rising edge of the current moment waveform in video field 16 was 900C km.
The main contribution to this CMC presumably comes from the return stroke of the 17.4 kA +CG. The charge
moment change of the troll is difficult to estimate, because video frames 20 to 22 coincide also with negative IC

Figure 6. (top) The reconstructed current moment waveform. The parts of the waveform coinciding with sprite video field are
indicated with red lines. The troll video fields are indicated with a magenta line. The strongest three +CG discharges are marked
with plus signs. The video field number follows the same convention as in Figure 3. The capital letters indicate the selected
sprite clusters shown in Figure 3. (bottom) Charge moment change derived by integration of the first and second parts of the
current moment waveform. The first part (up to video field 10) coincides with the triggering +CG and the dancing sprite, and
the second part (video fields 13–22) contains two strong +CG discharges, two sprite clusters, and the troll jet.
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and CG discharges (numbers 23, 24, and 25 in Table 1 and Figure 4). The charge moment change associated
with the whole second part of the sprite sequence (video fields 13–22) was 5300C km.

The calculated charge moment change for the return strokes and the total charge moment change for each
sprite event are within the range of values found by Lu et al. [2013]. They obtained the CMCs by integration of
the current moment waveform, which was reconstructed by the deconvolution method of Cummer and Inan
[2000]. Williams et al. [2007] obtained smaller CMC values; however, they did not reconstruct the current
moment waveform but calculated the CMC using the method described by Sentman [1996], which requires
the assumption that the charge transfer is short compared to round-the-world light time and has an
exponentially decaying current.

Note that ELF measurements enable us to infer only the vertical component of the charge moment change.
However, the vertical component is the key parameter in the initiation of sprites [Asano et al., 2009]. Some
recent theories suggest that a large charge moment change is a necessary but not sufficient condition for
sprite initiation, and mesospheric irregularities might be a necessary condition for the initiation of sprite
streamers [Liu et al., 2012; Kosar et al., 2012; Qin et al., 2014], and that the sprite streamers can produce
low-frequency electromagnetic radiation [Qin et al., 2012; Füllekrug et al., 2013].

7. Discussion
7.1. The First Part of the Sequence (the Dancing Sprite and the Delayed Sprites)

The initial sprite halo and the first sprite cluster were obviously triggered by the 81.8 kA +CG stroke at
22:34:06.956 UTC. The appearance of a sprite halo, observable with the applied set of hardware, suggests a
parent lightning stroke with high peak current [Williams et al., 2012]. Sprites of the first cluster appeared
after their parent lightning stroke probably with a short delay (≤23ms) [Hu et al., 2007], which implies a
large CMC during this discharge. Indeed, the estimated return stroke CMC of 700 C km exceeds the critical
values for prompt sprite generation found in the U.S. by Cummer and Lyons [2005]. Sprites appeared north
of the triggering lightning stroke. The three column sprites were probably the closest to the parent +CG
stroke. The offset of the projected footprint of the brightest carrot sprite in the first cluster was 15–20 km,
while the tree sprite on the far northern edge was displaced by about 35 km from the reported lightning
stroke location (Figure 4).

No individual lightning strokes could be associated with each of the new sprite entities that appeared at the
beginning of the sequence and made up the second cluster of sprites. A group of several column sprites
(video field 6; Figure 3), on the other hand, appeared in the time window in which two small peak current
+CGs were detected (strokes 3 and 4 in Table 1). The location of these lightning strokes coincides with the
triangulated location of the sprite group.

Within the next 20ms, a large carrot sprite appeared practically above the same area. The triggering
mechanism of this bright sprite is not unambiguous. The two small peak current +CGs could hardly produce a
CMC high enough for the initiation of short-delayed sprite events. A more plausible explanation is that
the very strong continuing current following the return stroke of the first +CG continued to support the
development of a mesospheric quasi-static electric field [Li et al., 2008]. Fading of the elements of the first
sprite cluster, subsequently appearing new sprite entities toward the north, and the smaller peak current
discharges occurring again to the north support the idea that in-cloud current channels may have connected
the discharge channel of the first +CG with other positive charge centers in the cloud.

In this case, elements of the second sprite cluster were rather delayed sprites, corresponding to the first
+CG stroke. Cummer and Füllekrug [2001] reported on several cases when unusually long continuing
currents of high amplitude indeed caused long-delayed sprites. Displacement of the big carrot sprite from
the initial +CG stroke (~70 km) is in fair agreement with displacements found by Füllekrug et al. [2001]
for long-delayed sprites as well as with those displacements estimated by van der Velde et al. [2010] in some
cases of long-delayed sprites caused by horizontally extensive lightning discharges.
7.1.1. The Sprite Current
The sharp CM peak, coinciding with field 7 (Figure 6, top), is most probably due to the mesospheric current in
the big carrot sprite [Cummer et al., 1998; Cummer, 2003; Hu et al., 2007]. The following facts support this
interpretation. No lighting stoke anywhere within the LINET lighting detection network coincided with the
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observed peak in the current moment waveform. The peak amplitude was very large; therefore, it is not very
likely that it corresponded to a weak return stroke that was below the threshold of the VLF network. There were
no time synchronization issues—the strokes detected by LINET were perfectly synchronized with their
corresponding ELF signal. It can also be seen that the risetime for the suspected peak was much slower than for
cloud-to-ground discharges. Examining the ELF signals from the two antennas (Figure 2), it is also clear that the
peak in the magnetic field component suspected to be the sprite current can be barely seen in the signal
registered by the EW antenna. We performed the antenna rotation using equation (5) and found that the angle
between the direction of arrival of this signal and the location of the first return stroke (+1) was 6°. This coincides
with the location of the big carrot sprite obtained from triangulation of the video recordings.

Early initiation and slow initial rising of this current peak are consistent with the observations of Füllekrug et al.
[2001] (“slow variation”) and Li et al. [2008] (“slow intensification” or SI), again in association with long-delayed
sprites. Li et al. [2008] suggested that this charge moment (CM) feature can be a signature of extending
discharge channels connecting and discharging further charge centers inside the thundercloud and leading to a
net CMC high enough to generate long-delayed sprites. Li et al. [2008] doubted the relation of SI-type current
variation to lightning M components. We note, however, that M components in +CG discharges may not be
as impulsive as in�CG cases [Campos et al., 2009], so in our opinion, anM component, too, may be considered
as source of such a waveform. The small current enhancement at ~50ms in Figure 6 can be another feature
of this type. It is problematic to verify the validity of this idea without optical observations of the CG discharge
channel. Nevertheless, we note that the potential role of lightning M components in sprite generation has
been emphasized by modeling results of Yashunin et al. [2007] and Asano et al. [2009]. Additionally, it was
observed that the previously appearing sprites in fields 5 and 6 in Figure 3 had the longest optical lifetime from
this cluster and not the lastly appearing big carrot. This observation may indicate that the last big carrot sprite
and the preceding set of sprites were produced by current processes of different time scales.

7.2. The Second Part of the Sequence (Two Sprites in Rapid Succession)

The appearance of the third sprite cluster was most probably triggered by the 37.7 kA +CG stroke (“+11” in
Figure 6). The estimated high-return stroke CMC value of 500 C km suggests a short-delayed sprite event.
The wider CM peak, on the other hand, can occur either because of a sprite current and/or a gradually
decaying lightning current. The location of the appearing sprites was shifted by about 50 km to the north of
the suspected parent stroke. Some of the sprites in this group may have remained bright due to a longer
standing quasi-static mesospheric electric field supported by the 11.6 kA +CG stroke, which appeared only
26ms after the previous big +CG. This smaller +CG stroke was also much closer to the location of the
sprites than the original parent stroke.

The close temporal agreement between the appearance of the fourth sprite cluster and the 17.4 kA +CG stroke
(“+20” in Figure 6) as well as the high initial CMC suggests that this event was also a short-delayed sprite. The
wider CM peak can be interpreted similarly as in the previous case, but here the presence of a slowly decaying
lightning current is more evident (Figure 6). The extended optical lifetime of some sprites and the experience that
sprite currents are impulse like [Cummer et al., 1998; Füllekrug et al., 2001; Li et al., 2008] support this finding.

We note that the amplitude of the horizontal displacement vector pointing to the last sprite cluster from its
suspected parent stroke is of the samemagnitude as the vector pointing from the first +CG to the last carrot in
the second sprite cluster, as well as the displacement vector of the previous sprite event. These vectors are
practically parallel to one another and point in the direction of the drifting of the lightning activity (Figure 5).
7.2.1. The Secondary TLE
A possible scenario of the secondary jet generation [Marshall and Inan, 2007; Lee et al., 2012] is that the +CG
discharge leaves an excess of negative charge in the cloud and the sprite current brings positive charge
from the ionosphere to the base of the sprite cluster, forming the positive plate of a capacitor. The
secondary jet is generated when the electric field exceeds the local breakdown level.

In our case, the troll jet occurred in the area below the third sprite cluster, practically halfway between the
second and the fourth sprite clusters. If the CM waveform can be interpreted so that sprite current (section 7.1.1)
occurred in all three sprite events, the ionospheric potential may have been lowered throughout a large area.

We note that no lightning stroke with a peak current larger than 10 kA was detected by LINET in the area
corresponding to the analyzed events (the trailing region of the storm system, 48.2–49.7°N and 12.6–14.0°E;
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marked with dotted magenta lines in Figure 5) for more than 4min before the discussed events. However,
nine CG strokes (seven positive and two negative) with peak currents larger than 10 kA were detected in
the same area in 2min just prior to that 4min break (22:28–22:29 UTC).

This relatively long time interval without high peak current CG discharges can explain the accumulation of
large amount of separated charge in the region, which could support the generation of the sprites as well as
that of the secondary TLE. Long continuing currents after the three bigger +CGs must have created a
considerable excess of negative charge in the thundercloud.

Since no lightning stroke was detected in the range of about 50 km of the location where the secondary jet
appeared after the last strong +CG, this charge surplus must have remained there to facilitate the generation
of the secondary jet. The time delay of the troll appearance after the big carrot sprite in the second cluster
was less than 300ms. This delay is much less than the few second mesospheric electric effect of sprites
indicated by narrowband VLF detections [Mika et al., 2005; Haldoupis et al., 2010]. With these observations in
mind, the joint analysis of triangulated sprite locations, the lightning data, and the CM variation inferred from
the ELF measurements indirectly support the mechanism of secondary generation originally suggested by
Marshall and Inan [2007].

7.3. Possible Excitation of Ionospheric Alfvén Resonator

The analyzed sequence of sprites was associated with a particular very low frequency waveform present in the
EW antenna (see Figure 2), which was practically parallel to the direction of the analyzed event. This waveform is
most probably due to the excitation of ionospheric Alfvén resonator (IAR) [Sukhorukov and Stubbe, 1997]. The
IAR-associated waveform was called a ULF transient by Sukhorukov and Stubbe [1997] and was hypothesized
to be a characteristic of sprite-associated discharges and manifest itself in the Earth-ionosphere waveguide.
Plyasov et al. [2012] showed that the IAR spectra produced by a single lightning discharge can be observed on
the ground and are present only in the radial component of the magnetic field. Our measurements provide
evidence in favor of this theory.

8. Summary and Conclusions

In this paper, we have presented an impressive sequence of sprites that occurred in rapid succession and was
followed by a secondary jet. We analyzed this event using our ELF and video recordings, as well as lightning
data. The low-light video recorded simultaneously at two sites allowed us to determine the location of the
TLEs. Lightning data helped us to characterize the lightning activity in the thunderstorm and to locate
individual lightning stokes. Using the ELF data, we reconstructed the current moment waveform associated
with the observed events. Combining these measurements enabled us to associate the current moment
variations with their parent discharge processes and to obtain more information on charge transfer processes
that generated the sprites and the secondary jet.

The analysis suggests that a single high peak current +CG (81.8 kA) generated two phenomena: a short-
delayed cluster of sprites without obvious sprite current and a delayed sequence of sprites (dancing
sprites) with a clearly detectable sprite current. Elements of the dancing sprite cluster were probably
produced by the strong continuing current following the +CG return stroke. Slow intensification of the
current before the detected sprite current suggests that an extension of the lightning channels may have
occurred in the thundercloud during the continuing current phase of the discharge. This scenario can explain
why the sprites appeared up to about 70 km from their parent lightning. The total CMC corresponding to this
event was 7900C km, where the return stroke of the +CG accounts for 700C km, and 4100C km can be
associated with the suspected sprite current and the corresponding part of the subsequent continuing current.

Two more +CG lightning strokes of relatively higher peak current, 37.7 kA and 17.4 kA, followed the first
intense +CG stroke after 262ms and 310ms, respectively. Coincident optical observations suggest that
these lightning strokes produced short-delayed sprites. The total CMCs corresponding to these events were
2200 and 3000 C km, respectively. According to the corresponding CM waveform, considerable currents
could flow in the body of these sprites. Provided that this scenario is valid, the slowly decaying current in
the last +CG discharge and the subsequent absence of lightning activity in the region could create an
environment that is suitable for the production of a secondary TLE by the mechanism suggested by
Marshall and Inan [2007].
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The presented analysis of this extraordinary sequence of TLEs demonstrates how involving more independent
measurements and observations in an investigation can reveal multiple aspects of a phenomenon. In
particular, we emphasize the importance of having reliable information on the charge transfer processes, and
we have shown the usability of the described method to deduce charge moment variations from ELF records.
It is worth noting that the Hylaty ELF station has a lower cutoff frequency of only 0.03Hz, which is lower than
most other ELF stations in the world. This enables us to record very slow electromagnetic field changes
generated by long-lasting continuing currents, such as the current associated with the dancing sprite shown
in this paper. If the lower cutoff frequency were significantly higher, a large part of the continuing current
would be invisible due to bandwidth limitations.
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