140 research outputs found

    The radial arrangement of the human chromosome 7 in the lymphocyte cell nucleus is associated with chromosomal band gene density

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer-Verlag 2008.In the nuclei of human lymphocytes, chromosome territories are distributed according to the average gene density of each chromosome. However, chromosomes are very heterogeneous in size and base composition, and can contain both very gene-dense and very gene-poor regions. Thus, a precise analysis of chromosome organisation in the nuclei should consider also the distribution of DNA belonging to the chromosomal bands in each chromosome. To improve our understanding of the chromatin organisation, we localised chromosome 7 DNA regions, endowed with different gene densities, in the nuclei of human lymphocytes. Our results showed that this chromosome in cell nuclei is arranged radially with the gene-dense/GC-richest regions exposed towards the nuclear interior and the gene-poorest/GC-poorest ones located at the nuclear periphery. Moreover, we found that chromatin fibres from the 7p22.3 and the 7q22.1 bands are not confined to the territory of the bulk of this chromosome, protruding towards the inner part of the nucleus. Overall, our work demonstrates the radial arrangement of the territory of chromosome 7 in the lymphocyte nucleus and confirms that human genes occupy specific radial positions, presumably to enhance intra- and inter-chromosomal interaction among loci displaying a similar expression pattern, and/or similar replication timing

    Identification of Spt5 Target Genes in Zebrafish Development Reveals Its Dual Activity In Vivo

    Get PDF
    Spt5 is a conserved essential protein that represses or stimulates transcription elongation in vitro. Immunolocalization studies on Drosophila polytene chromosomes suggest that Spt5 is associated with many loci throughout the genome. However, little is known about the prevalence and identity of Spt5 target genes in vivo during development. Here, we identify direct target genes of Spt5 using fogsk8 zebrafish mutant, which disrupts the foggy/spt5 gene. We identified that fogsk8 and their wildtype siblings differentially express less than 5% of genes examined. These genes participate in diverse biological processes from stress response to cell fate specification. Up-regulated genes exhibit shorter overall gene length compared to all genes examined. Through chromatin immunoprecipitation in zebrafish embryos, we identified a subset of developmentally critical genes that are bound by both Spt5 and RNA polymerase II. The protein occupancy patterns on these genes are characteristic of both repressive and stimulatory elongation regulation. Together our findings establish Spt5 as a dual regulator of transcription elongation in vivo and identify a small but diverse set of target genes critically dependent on Spt5 during development

    Subcellular distribution of nuclear import-defective isoforms of the promyelocytic leukemia protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The promyelocytic leukemia (PML) protein participates in a number of cellular processes, including transcription regulation, apoptosis, differentiation, virus defense and genome maintenance. This protein is structurally organized into a tripartite motif (TRIM) at its N-terminus, a nuclear localization signal (NLS) at its central region and a C-terminus that varies between alternatively spliced isoforms. Most PML splice variants target the nucleus where they define sub-nuclear compartments termed PML nuclear bodies (PML NBs). However, PML variants that lack the NLS are also expressed, suggesting the existence of PML isoforms with cytoplasmic functions. In the present study we expressed PML isoforms with a mutated NLS in U2OS cells to identify potential cytoplasmic compartments targeted by this protein.</p> <p>Results</p> <p>Expression of NLS mutated PML isoforms in U2OS cells revealed that PML I targets early endosomes, PML II targets the inner nuclear membrane (partially due to an extra NLS at its C-terminus), and PML III, IV and V target late endosomes/lysosomes. Clustering of PML at all of these subcellular locations depended on a functional TRIM domain.</p> <p>Conclusions</p> <p>This study demonstrates the capacity of PML to form macromolecular protein assemblies at several different subcellular sites. Further, it emphasizes a role of the variable C-terminus in subcellular target selection and a general role of the N-terminal TRIM domain in promoting protein clustering.</p

    Drosophila Genome-Wide RNAi Screen Identifies Multiple Regulators of HIF–Dependent Transcription in Hypoxia

    Get PDF
    Hypoxia-inducible factors (HIFs) are a family of evolutionary conserved alpha-beta heterodimeric transcription factors that induce a wide range of genes in response to low oxygen tension. Molecular mechanisms that mediate oxygen-dependent HIF regulation operate at the level of the alpha subunit, controlling protein stability, subcellular localization, and transcriptional coactivator recruitment. We have conducted an unbiased genome-wide RNA interference (RNAi) screen in Drosophila cells aimed to the identification of genes required for HIF activity. After 3 rounds of selection, 30 genes emerged as critical HIF regulators in hypoxia, most of which had not been previously associated with HIF biology. The list of genes includes components of chromatin remodeling complexes, transcription elongation factors, and translational regulators. One remarkable hit was the argonaute 1 (ago1) gene, a central element of the microRNA (miRNA) translational silencing machinery. Further studies confirmed the physiological role of the miRNA machinery in HIF–dependent transcription. This study reveals the occurrence of novel mechanisms of HIF regulation, which might contribute to developing novel strategies for therapeutic intervention of HIF–related pathologies, including heart attack, cancer, and stroke

    PPS, a Large Multidomain Protein, Functions with Sex-Lethal to Regulate Alternative Splicing in Drosophila

    Get PDF
    Alternative splicing controls the expression of many genes, including the Drosophila sex determination gene Sex-lethal (Sxl). Sxl expression is controlled via a negative regulatory mechanism where inclusion of the translation-terminating male exon is blocked in females. Previous studies have shown that the mechanism leading to exon skipping is autoregulatory and requires the SXL protein to antagonize exon inclusion by interacting with core spliceosomal proteins, including the U1 snRNP protein Sans-fille (SNF). In studies begun by screening for proteins that interact with SNF, we identified PPS, a previously uncharacterized protein, as a novel component of the machinery required for Sxl male exon skipping. PPS encodes a large protein with four signature motifs, PHD, BRK, TFS2M, and SPOC, typically found in proteins involved in transcription. We demonstrate that PPS has a direct role in Sxl male exon skipping by showing first that loss of function mutations have phenotypes indicative of Sxl misregulation and second that the PPS protein forms a complex with SXL and the unspliced Sxl RNA. In addition, we mapped the recruitment of PPS, SXL, and SNF along the Sxl gene using chromatin immunoprecipitation (ChIP), which revealed that, like many other splicing factors, these proteins bind their RNA targets while in close proximity to the DNA. Interestingly, while SNF and SXL are specifically recruited to their predicted binding sites, PPS has a distinct pattern of accumulation along the Sxl gene, associating with a region that includes, but is not limited to, the SxlPm promoter. Together, these data indicate that PPS is different from other splicing factors involved in male-exon skipping and suggest, for the first time, a functional link between transcription and SXL–mediated alternative splicing. Loss of zygotic PPS function, however, is lethal to both sexes, indicating that its role may be of broad significance

    Genome-wide examination of the transcriptional response to ecdysteroids 20-hydroxyecdysone and ponasterone A in Drosophila melanogaster

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The 20-hydroxyecdysone (20E) hierarchy of gene activation serves as an attractive model system for studying the mode of steroid hormone regulated gene expression and development. Many structural analogs of 20E exist in nature and among them the plant-derived ponasterone A (PoA) is the most potent. PoA has a higher affinity for the 20E nuclear receptor, composed of the ecysone receptor (EcR) and Ultraspiracle proteins, than 20E and a comparison of the genes regulated by these hormones has not been performed. Furthermore, in <it>Drosophila </it>different cell types elicit different morphological responses to 20E yet the cell type specificity of the 20E transcriptional response has not been examined on a genome-wide scale. We aim to characterize the transcriptional response to 20E and PoA in <it>Drosophila </it>Kc cells and to 20E in salivary glands and provide a robust comparison of genes involved in each response.</p> <p>Results</p> <p>Our genome-wide microarray analysis of Kc167 cells treated with 20E or PoA revealed that far more genes are regulated by PoA than by 20E (256 vs 148 respectively) and that there is very little overlap between the transcriptional responses to each hormone. Interestingly, genes induced by 20E relative to PoA are enriched in functions related to development. We also find that many genes regulated by 20E in Kc167 cells are not regulated by 20E in salivary glands of wandering 3<sup>rd </sup>instar larvae and we show that 20E-induced levels of <it>EcR </it>isoforms <it>EcR-RA, ER-RC</it>, and <it>EcR-RD/E </it>differ between Kc cells and salivary glands suggesting a possible cause for the observed differences in 20E-regulated gene transcription between the two cell types.</p> <p>Conclusions</p> <p>We report significant differences in the transcriptional responses of 20E and PoA, two steroid hormones that differ by only a single hydroxyl group. We also provide evidence that suggests that PoA induced death of non-adapted insects may be related to PoA regulating different set of genes when compared to 20E. In addition, we reveal large differences between Kc cells and salivary glands with regard to their genome-wide transcriptional response to 20E and show that the level of induction of certain EcR isoforms differ between Kc cells and salivary glands. We hypothesize that the differences in the transcriptional response may in part be due to differences in the EcR isoforms present in different cell types.</p

    The RNA Helicase Rm62 Cooperates with SU(VAR)3-9 to Re-Silence Active Transcription in Drosophila melanogaster

    Get PDF
    Gene expression is highly dynamic and many genes show a wide range in expression over several orders of magnitude. This regulation is often mediated by sequence specific transcription factors. In addition, the tight packaging of DNA into chromatin can provide an additional layer of control resulting in a dynamic range of gene expression covering several orders of magnitude. During transcriptional activation, chromatin barriers have to be eliminated to allow an efficient progression of the RNA polymerase. This repressive chromatin structure has to be re-established quickly after it has been activated in order to tightly regulate gene activity. We show that the DExD/H box containing RNA helicase Rm62 is targeted to a site of rapid induction of transcription where it is responsible for an increased degree of methylation at H3K9 at the heat shock locus after removal of the heat shock stimulus. The RNA helicase interacts with the well-characterized histone methyltransferase SU(VAR)3-9 via its N-terminus, which provides a potential mechanism for the targeting of H3K9 methylation to highly regulated genes. The recruitment of SU(VAR)3-9 through interaction with a RNA helicase to a site of active transcription might be a general mechanism that allows an efficient silencing of highly regulated genes thereby enabling a cell to fine tune its gene activity over a wide range
    corecore