20 research outputs found

    Halogen-free flame-retardant compounds. Thermal decomposition and flammability behavior for alternative polyethylene grades

    Get PDF
    The effect of six halogen-free flame retardant (FR) formulations was investigated on the thermal stability of two low-density polyethylenes (LDPE) and one linear low-density polyethylene (LLDPE), by means of thermogravimetric analysis (TGA) under nitrogen and air atmosphere. The relative data were combined with flammability properties and the overall performance of the FRs was correlated with the type of branching in the polyethylene grades and to their processing behavior. The thermal degradation kinetics was further determined based on the Kissinger and Coats-Redfern methods. In terms of flammability, the addition of a triazine derivative and ammonium polyphosphate at a loading of 35 wt. %. was found to be the most efficient, leading to UL 94 V0 ranking in the case of the LDPE grade produced in an autoclave reactor. - 2019 by the authors.Funding: This publication was made possible by the NPRP award [NPRP 9-161-1-030] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the author(s)

    The Anopheles gambiae Odorant Binding Protein 1 (AgamOBP1) Mediates Indole Recognition in the Antennae of Female Mosquitoes

    Get PDF
    Haematophagous insects are frequently carriers of parasitic diseases, including malaria. The mosquito Anopheles gambiae is the major vector of malaria in sub-Saharan Africa and is thus responsible for thousands of deaths daily. Although the role of olfaction in A. gambiae host detection has been demonstrated, little is known about the combinations of ligands and odorant binding proteins (OBPs) that can produce specific odor-related responses in vivo. We identified a ligand, indole, for an A. gambiae odorant binding protein, AgamOBP1, modeled the interaction in silico and confirmed the interaction using biochemical assays. RNAi-mediated gene silencing coupled with electrophysiological analyses confirmed that AgamOBP1 binds indole in A. gambiae and that the antennal receptor cells do not respond to indole in the absence of AgamOBP1. This case represents the first documented instance of a specific A. gambiae OBP–ligand pairing combination, demonstrates the significance of OBPs in odor recognition, and can be expanded to the identification of other ligands for OBPs of Anopheles and other medically important insects

    Expression and Membrane Topology of Anopheles gambiae Odorant Receptors in Lepidopteran Insect Cells

    Get PDF
    A lepidopteran insect cell-based expression system has been employed to express three Anopheles gambiae odorant receptors (ORs), OR1 and OR2, which respond to components of human sweat, and OR7, the ortholog of Drosophila's OR83b, the heteromerization partner of all functional ORs in that system. With the aid of epitope tagging and specific antibodies, efficient expression of all ORs was demonstrated and intrinsic properties of the proteins were revealed. Moreover, analysis of the orientation of OR1 and OR2 on the cellular plasma membrane through the use of a novel ‘topology screen’ assay and FACS analysis demonstrates that, as was recently reported for the ORs in Drosophila melanogaster, mosquito ORs also have a topology different than their mammalian counterparts with their N-terminal ends located in the cytoplasm and their C-terminal ends facing outside the cell. These results set the stage for the production of mosquito ORs in quantities that should permit their detailed biochemical and structural characterization and the exploration of their functional properties

    Topology assays for the mosquito OR1 and OR2.

    No full text
    <p>Chimeric receptor proteins fused at either their N- or the C- terminus to the TEV cleavage sequence (THE) and the HR3 transcription factor are co-expressed in Hi5 cells with a GFP reporter construct together with or without TEV protease. For both OR1 (<b>A</b>) and OR2 (<b>B</b>) N-terminal fusions (HR3-THE-OR1 and HR3-THE-OR2), expression of the TEV protease resulted in increase of fluorescence of the cells. No significant increase of fluorescence was detected when the C-terminal fusions of ORs were used (OR1-THE-HR3 and OR2-THE-HR3). Similar constructs of the human opioid receptor δ (δOR) that was used as control (<b>C</b>) give opposite results with an increased fluorescence for the C-terminal fusion (δOR-THE-HR3). For each chimeric receptor protein, both representative images (left) and quantitative results (right, with values representing the mean ± S.E.M. of four experiments) from the fluorometric analysis are shown.</p

    Flow cytometric analysis of expression of Myc-tagged OR2 on the surface of Bm5 cells.

    No full text
    <p>(<b>A</b>) N- or (<b>B</b>) C-terminally Myc-tagged OR2 were stably expressed in Bm5 cells in the presence of flagOR7 and analyzed by FACS for the extracellular localization of the Myc tag. For each panel, the green tracing and number represent fluorescence values obtained from the staining of the cells with only the FITC labelled secondary antibodies, while the red tracing and number represent values obtained from cells incubated with both the primary anti-Myc and the FITC labelled secondary antibodies. Increased fluorescence intensity (2.59-fold over the background value) was observed for the C-terminally Myc-tagged receptor in comparison to the receptor that was Myc-tagged at the N-terminal end (1.43-fold over the background value). (<b>C</b>) Values (increases over background) indicated in this panel represent the mean ± S.E.M. of three independent experiments. (<b>D</b>) Western blot analyses of whole cell lysates from the stable cell lines used for FACS analysis and control, mock-transformed cells, probed with anti-Myc (upper) and anti- tubulin (lower) antibodies. (<b>E</b>) FACS analysis of cells expressing the N-terminally Myc-tagged µ-opioid receptor used as a positive control for the extracellular localization of the Myc tag. Green and red tracing/numbers are as in panels A and B. Inset shows the detection of µOR in these cells by western blotting with the anti-myc antibody. The arrowhead and the arrow point to major bands detected (putative monomer and dimer, respectively), while the positions of 50, 90 and 118-kDa molecular mass markers are indicated at left.</p

    Expression of <i>A. gambiae</i> OR1, OR2 and OR7 in insect cells.

    No full text
    <p>(<b>A</b>) Schematic representation of the basic backbone vector (pEIA) used for the heterologous expression of various forms (tagged and untagged) of ORs in lepidopteran cells. <i>hr3</i> enhancer, baculoviral (BmNPV) homologous region 3 enhancer sequence; pActin, <i>Bombyx mori</i> A3 cytoplasmic actin promoter; MCS, multiple cloning site; actin pA, 3′untranslated region of <i>B. mori</i> actin gene containing polyadenylation signals; IE1 cassette, baculoviral (BmNPV) DNA fragment containing the <i>ie-1</i> transactivator gene under the control of its native viral promoter; OR; <i>A. gambiae</i> odorant receptor ORF; Myc, Flag and MycHis, epitope tags. (<b>B</b>) Detection of heterologous expression of C-terminally MycHis-tagged ORs in transfected Hi5 cells using Myc monoclonal antibody. (<b>C</b>) Detailed western blot analysis of OR2. Hi5 cells were transfected with plasmids expressing different versions of OR2, and lysates were analyzed using a specific polyclonal antibody against OR2 (left panel, lanes 1–5) or monoclonal antibodies against the Myc (middle panel, lanes 6–9) or the Flag epitope (right panel, lanes 10–11). Arrowheads and arrows indicate major bands corresponding to monomers and putative dimers, respectively. (<b>D</b>) Detailed western blot analysis of OR1. Hi5 cells were transfected with plasmids expressing different versions of OR1, and lysates were analyzed using monoclonal antibodies against the Myc (middle panel, lanes 1–4) or the Flag epitope (right panel, lanes 5–6). In the left panel immunoreactivity of the specific polyclonal antibody against OR1 is shown, with lysates from cells expressing mycOR1 after treatment with the proteasome inhibitor MG132. Molecular weight markers are shown on the left. (<b>E</b>) and (<b>F</b>) Effect of coexpression of OR7 on the expression levels of OR1 and OR2. Hi5 cells were transfected with constant amounts (45% of total DNA) of Myc-tagged OR1 or OR2, along with equal amounts of Flag-tagged OR7 or empty vector (pEIA), and pEIA-GFP (10% of total DNA, for evaluation of the efficiency of transfection). Whole cell lysates (<b>E</b>) and membrane fractions (<b>F</b>) were analysed by SDS-PAGE and western blot. Detection of OR1, OR2 and OR7 was done using the anti-Myc and anti-Flag antibodies either consecutively (in <b>E</b>) or simultaneously (in <b>F</b>). To control for loading, the whole lysate fractions were also probed with an anti-tubulin antibody.</p
    corecore