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Abstract: The effect of six halogen-free flame retardant (FR) formulations was investigated on the
thermal stability of two low-density polyethylenes (LDPE) and one linear low-density polyethylene
(LLDPE), by means of thermogravimetric analysis (TGA) under nitrogen and air atmosphere.
The relative data were combined with flammability properties and the overall performance of the
FRs was correlated with the type of branching in the polyethylene grades and to their processing
behavior. The thermal degradation kinetics was further determined based on the Kissinger and
Coats-Redfern methods. In terms of flammability, the addition of a triazine derivative and ammonium
polyphosphate at a loading of 35 wt. %. was found to be the most efficient, leading to UL 94 V0
ranking in the case of the LDPE grade produced in an autoclave reactor.

Keywords: halogen-free flame retardants; low-density polyethylene; linear low-density polyethylene;
intumescence; thermal decomposition; flammability; Kissinger model; Coats-Redfern model

1. Introduction

Polyethylenes (PEs) are the most widely used commodity polymers with a high potential of
value-adding via proper formulation development. Increasing amounts of PEs are nowadays used
in electrical appliances, wires and cables, building pipes, roofing, etc., because of their mechanical
durability, good chemical resistance, low density, no toxicity, good electrical insulation and excellent
processability [1]. The relevant applications need to be flame retarded in order to comply with stringent
fire safety standards of the finished products. However, PEs are among the most flammable materials
with high heat of combustion, low limited oxygen index (LOI) and high heat release, leaving little or
no residual char. To improve the flame resistance, halogen-containing flame retardants (HFRs), such as
various brominated FRs (decabromodiphenyl ether, tetrabromobisphenol A, tris(tribromoneopentyl)
phosphate) are mainly used in combination with antimony oxide [2,3]. Nevertheless, HFRs present
significant disadvantages, namely corrosion of the equipment during processing, production of toxic
gases and smoke in the case of fire as well as environmental challenges.

Halogenated flame retardants are therefore often phased out and replaced with halogen-free
alternatives [4,5]. Among the alternatives, inorganic flame retardants, such as aluminum hydroxide
and magnesium hydroxide, need to be added to a polyethylene in high loadings (>50 wt. %) in order
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to pass various fire standards tests. These high levels impair negatively on the mechanical, physical
and rheological properties, as well as the processing ability of the polyolefins [2]. On the other hand,
phosphorus- and nitrogen-based compounds, including intumescent flame retardant systems (IFRs),
present a viable alternative. IFRs play an effective role, mainly through a condensed-phase mechanism
forming a carbonaceous foam residue (swollen char) on the surface of the polymer that acts as a heat
insulator and physical barrier to the transport of oxygen and pyrolysis products. Commonly used
IFRs consist of three main ingredients, namely an acid source, a carbon source (char forming agent,
CFA) and a gas source (blowing/spumific agent). The acid source decomposes at a low temperature
and generates inorganic acid, such as phosphoric acid, polyphosphoric acid and metaphosphoric acid.
An esterification reaction takes place between the inorganic acid and the carbon source, and the carbon
source turns into the protective char layer after the dehydration temperature. The blowing agent
releases gases (e.g., water vapor, NH3) causing the ester to create a foam that forms an insulating
barrier which adheres to the substrate. Finally, the ester decomposes to form a tough carbon matrix
acting as a shield for the polymer [6]. In each case, the ratio of acid source, charring source and blowing
agent should be optimized per polymer type.

A widely used and effective IFR system is based on ammonium polyphosphate (APP),
pentaerythritol (PER) and melamine (MA). Itis generally agreed that APP, a precursor of polyphosphoric
acid, promotes the acid hydrolytic reaction of the substrates, while it also serves as a blowing
agent [1,7-10]. In addition, new CFAs, i.e,, triazines and derivatives, have attracted more and more
attention; they are good carbon sources and potential gas sources, because of their abundant nitrogen
and structure of tertiary nitrogen, presenting also water resistance [1,7,9]. Therefore, the objective of the
current paper was to investigate the effect of commercially available flame retardants on the thermal
stability and flammability properties (vertical burning test, UL 94V) of low-density polyethylene
(LDPE) and linear low-density polyethylene (LLDPE) grades. The applied formulations involved
a nitrogen-based compound (FR1), two intumescent systems with triazine derivatives (FR2, FR3),
a commercial blend of phosphorus-nitrogen compounds (FR4) and two intumescent systems with
pentaerythritol derivatives (FR5, FR6). Single phosphorus-based FRs were not examined since it
is well-known that they mainly are efficient in oxygen-containing polymers, such as polyamides:
they can produce derivatives with strong dehydration and when oxygen is provided the derivatives
can dehydrogenate the substrate to increase the amount of residue after combustion [11].

The overall performance of the FR formulations was herein correlated with the type of branching
in the polyethylene grades and to their processing behavior, a study which is being performed for
the first time, since one PE type is usually studied in pertinent works. More specifically, two types of
LDPE were examined: the LDPE-A is manufactured in an autoclave (batch process) and the LDPE-T in
a tubular reactor (continuous process), and they differ in the type and level of long-chain branching
and in the molecular shape (Figure 1). LDPE-A is produced at a constant temperature and under
practically ideal mixing and presents short- and long-chain branching points distributed essentially
at random along the chains irrespective of molecular weight. Its molecules show tree-like branching
and a nearly globular shape. The LDPE-T is produced under variable conditions (not a constant
temperature) and shows a narrower molecular weight distribution, but wider distributions of long-
and short-chain branching. In fact, the LDPE-T displays less long- and short-chain branching with
growing molecular weight and the molecules are characterized by comb-like long-chain branching
and consequently have more extended (rod-like but flexible) conformations [12-14]. On the other
hand, the LLDPE is a copolymer of ethylene and a-olefins, presenting narrower molecular weight
distribution and not containing long-chain branching compared to the LDPE grades [15]. Finally,
overall characterization including melt flow rate (MFR), mechanical properties and melting behavior
(DSC) of the most promising FR compounds were performed so as to evaluate the viability of the
relevant FR systems per polyethylene type.
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2.2. Preparation of Flame Retarded Compounds
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Table 1. Composition of FR formulations in wt.% for polyethylene grades. All formulations contained
0.05 wt.% calcium stearate.

Flamestab PPM PPM Charmor  Charmor Exolit ADK Total
FRs NOR116 Triazine Triazine DP40 PP100 AP422 Stab FR CFA:APP
765 HF FP2200 (wt.%)
FR1 5 5
FR2 30 30
FR3 8.75 26.25 35 1:3
FR4 * 30 30
FR5 7 21 7 35 1:1.5
FR6 7 21 7 35 1:1.5

*0.1 wt.% calcium stearate.
2.3. Characterization

2.3.1. HT-GPC-MALS

HT-GPC-MALS characterizations were performed using an Agilent PL 220 oven (Agilent
Technologies, Frankfurt, Germany) equipped with a PolymerChar IR4 detector (Polymer Char, Valencia,
Spain) for concentration detection and a Wyatt Heleos Dawn Il MALS (WYATT Technology Europe
GmbH, Dernbach, Germany) for direct determination of molar masses and LCB content. The separations
were performed at 150 °C in 1,2 4-trichlorobenzene (containing 1 g butylated hydroxytoluene/L for
stabilization) using three Agilent PLgel Olexis (300 X 7.5 mm (L X LD.)) columns (Agilent Technologies,
Frankfurt, Germany). 200 uL polymer solution were injected per analysis.

2.3.2. SEM

Scanning electron microscopy (SEM) was performed on the surfaces of the injection molded
specimens in a FEI Quanta 200 electron microscope (Thermo Fischer SCIENTIFIC, Hillsboro, USA)
at an accelerating voltage of 2-5 kV. The samples were sputter gold coated for 30 s using an Agar
sputter coater.

2.3.3. UL 94 V Testing

The flammability was assessed according to UL 94 vertical burning tests (ASTM D3801) on
injection molded bars, following a pretreatment of the specimens for 45 h at 23 °C and 50% RH.

2.3.4. Thermogravimetric Analysis (TGA)

The thermal decomposition was studied via thermogravimetric analysis in a Mettler Toledo
TGA/DSC 1 HT instrument (Mettler-Toledo GmbH, Greifensee, Switzerland). Approximately 15-30 mg
of sample was heated from 30 to 800 °C at 10 °C min~! under air (thermo-oxidative decomposition) and
nitrogen (thermal decomposition) atmospheres, while additional heating rates (5, 15, 20, 25 °C min~1)
were examined under air atmosphere. The onset of decomposition temperature was defined as
the temperature at 5% weight loss (T;5%,), the degradation temperature (T;) was determined at the
maximum rate of weight loss, and the char yield as the % residue at 600 and 800 °C. The pure FR
additives, pure polymers and the relevant FR-containing compounds were accordingly analyzed.

2.3.5. Differential Scanning Calorimetry (DSC)

DSC analysis was performed using a Mettler DSC 1 STARe system (Mettler-Toledo GmbH,
Greifensee, Switzerland) under nitrogen flow (20 mL min~!). Approximately 15 mg of each polyolefin
sample was placed in a 40 uL aluminum crucible and was initially heated from 30 to 160 °C (1st heating)
at a heating rate of 10 °C min~?, then cooled at the same rate to 30 °C (cooling) and reheated to 160 °C
at the same rate (2nd heating). The crystallization point (T.) was obtained from the DSC cooling cycle.
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The melting point and enthalpy of fusion were derived from the second heating cycle, and the mass
fraction crystallinity (x., %) was computed according to Equation (1):

Ay
Ao(1-¢)

where, AHy is the heat of fusion (J g 1) and AHy is the heat of fusion of 100% crystalline polymer (J g71),
¢ is the additive nominal mass fraction in the compound. The value for AHy was 293 ] g~! [16].

xe = 100 x 1)

2.3.6. Melt Flow Rate (MFR)

The melt flow rate (MFR, g/10 min) was measured at 190 °C and 2.160 kg, according to ASTM
D1238, using a Dynisco model 4004 capillary rheometer (Dynisco Europe GmbH, Heilbronn, Germany).

2.3.7. Mechanical Properties

The tensile testing was performed at an elongation rate of 10 mm min~! using a Lloyd LR50K Plus
universal testing machine (Lloyd Instruments Ltd, West Sussex, UK). The gauge length was 50 mm.
The Young’s modulus (E) was manually calculated from the slope of the stress-strain curve between
strain values of 0.2 and 2.2%. The impact test specimens were cut down to a length of 63.5 mm and
were notched in the center (45° notch and 2 mm depth) so as to meet the ASTM D256 definitions.
Impact tests were performed in an Instron Wolpert PW5 impact testing apparatus (Instron, Norwood,
USA) and the Izod impact strength (a;y in k] m~2) was calculated according to Equation (2), where E,
is the corrected measured absorbed energy during impact in J, & is the thickness of the tested specimen
in mm and by is the remaining width of the tested specimen in mm. For each measurement five
specimens were tested.

E

o be 3
aiN T x 10 2)

3. Results and Discussion

3.1. Thermal Decomposition of FR-Containing Compounds

Thermogravimetric analysis (TGA) is a common technique to evaluate the thermal stability of
various polymers giving information on weight loss, but no chemical information [17,18]. In our work,
the thermal decomposition profiles of the pure components (additives, pure polymers) and of the
FR-containing compounds were examined at a heating rate of 10 °C min~! under air and nitrogen
atmospheres, and the relevant data correlated with the flammability properties (UL94 V results).

Starting with the pure polymers, all three grades exhibited a one-step decomposition (Figure S2a)
with the onset of the polyethylene backbone degradation in the range of (419-448) + 3 °C (T 59,) under
nitrogen (Figure S2b). The maximum rate of weight loss was observed at 460 + 8 °C and 466 + 4 °C for
LDPE-A and LDPE-T respectively, while for LLDPE at a higher value of 476 + 1 °C. All the grades
had negligible residue values, verifying the little char formation which characterizes polyolefins.
When comparing the PE grades, LLDPE presented a higher thermal stability under nitrogen than
LDPE-T, which in turn was found more stable than LDPE-A. The higher thermal stability of LLDPE
when compared to the LDPE grades is in agreement with literature [16,19], and this ranking can be
correlated with the branching degree and the number of the tertiary carbons that are the most reactive
parts of the polymer molecule. LLDPE presents minimal branching when compared to the LDPE
grades, and thus higher thermal stability.

On the other hand, the lower thermal stability of LDPE-A can be attributed to a larger number
of tertiary carbons compared to LDPE-T. The same trend was observed in the T,; values during the
thermo-oxidative degradation (TGA under air), but for the onset of degradation (T 59,), the temperatures
were found to be similar, independent of the polyethylene type (410-417 °C). Furthermore, as



Polymers 2019, 11, 1479 6 0of 17

anticipated, pure thermal degradation (under nitrogen) occurred at higher temperatures than
thermo-oxidative degradation.

Turning to the pure FR additives, TGA analysis under nitrogen revealed that the T, 5o, varied
between 243 and 380 °C, which is significantly lower than those of the pure polyethylene grades
(Figure S3). More specifically, the degradation of the alkoxy amine (triazine derivative, Flamestab
NOR116), which is a nitrogen-based FR, was found to be a two-step process with maximum rates of
weight loss at 290 and 437 °C, and with a residue of 4% at 800 °C, implying a low charring ability.
PPM Triazine HF is also a nitrogen-based additive but it presents a higher residue (17.3% under Ny),
showing its role as a charring source. The commercial mixture of the Triazine HF with ammonium
polyphosphate (PPM Triazine 765) exhibits negligible char at 800 °C with more than two steps of
thermal decomposition. The latter can be attributed to the used ratio of the CFA:APP in the commercial
system. When the CFA content is high, the corresponding system has a superfluous charring source
and a lack of acid source, so part of the CFA cannot be dehydrated into char and decomposes into gas
products [11].

Similarly, the two pentaerythritol derivatives (Charmor PP100 (polypentaerythritol) and Charmor
DP40 (dipentaerythritol)) did not yield a significant amount of char (3.6%, 3.9%), and they presented
mainly one step of thermal degradation with respective onsets of degradation at 243.1 °C and 303.8 °C.
The pentaerythritol derivatives obviously decompose into gas phase products in the absence of an
acid source. As far as ammonium polyphosphate (Exolit AP422) is concerned, its degradation profile
presented a first weight loss peak at ca. 330 °C under N, attributed to the elimination of NH3; and
H,0 during the thermal decomposition of the polyphosphate. The second peak appearing at 641 °C
is attributed to the release of phosphoric acid, polyphosphoric acid and metaphosphoric acid with
the decomposition of APP [11]. Finally, the char residue is high, i.e., 23.5% at 800 °C, because during
the course of its decomposition, polyphosphoric acid itself is reverted to phosphoric acid and volatile
gases, such as NHj3 and Ny, which cause the char to swell. NHj reacts with phosphoric acid, gathering
in the swollen char layer to produce the corresponding salt, and this salt constitutes a block protecting
the underlying material [9].

ADK Stab FP 2200 exhibited the most promising TGA curve in terms of intumescence. It is a blend
of phosphorus-nitrogen compounds and the thermal degradation occurs in two main steps, with the
first T; at 292 °C and the second at 412 °C, corresponding potentially to the loss of water and small
molecules such as NHj3, further carbonization and the thermal degradation of char residue. The TGA
curve is similar to the one of the alkoxy amine (Flamestab NOR116), but the char residue at 800 °C was
found to be much higher, i.e., 51%. This char yield was in fact the highest value among all the examined
FRs, implying that the pertinent system combines a carbon source, an acid source and a blowing agent,
and presents high charring ability under the synergism of phosphorus and nitrogen compounds.

The presence of the FRs in the polymer matrix resulted in changes in the TGA curves compared to
the reference polymers. As can be seen in Figure 2, the thermal decomposition of the FR-containing
compounds involved two or even more degradation steps, with the onset temperature lower compared
to the onset of the pure grades; the T 50, value was lower in the range of 330422 °C under nitrogen
(vs. 419448 °C for pure polymers), with the standard deviation of the mean (STDEV) ranging from
1-5 °C for the FR3 and FR4 compounds. This decrease is attributed to the lower stability of the bonds
in the FR molecules (such as P-O and C-N) compared to the uniform C-C bonds in polyethylene,
and thus the earlier degradation of the additives [6,20]. The lowest T} 59, values were observed in
the cases of FR5 and FR6, i.e., when the pentaerythritol derivatives and APP were used, and can be
attributed to the formation of thermally unstable ester mixtures between the -P-OH group in the APP
molecules and the -OH group in the CFA [8].

When comparing the degradation temperatures at the maximum weight loss (T;), the addition
of FRs resulted in an increase in Ty, proving the formation of a protective char layer and improving
thus the thermal stability of the grades. In the work of Makhlouf et al. [20], an increase in the T by
30 °C was observed in the case of the effective LLDPE FR formulation. In the work of Xie and Qu [21],
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Figure 2. TGA curves under nitrogen and air of FR-containing compounds (a) LDPE-A, (b) LDPE-T,
](:&Eﬁﬁ’l::r GA curves under nitrogen and air of FR-containing compounds (a) LDPE-A, (b) LDPE-T, (c)
LLDPE

The residue in the TGA can also be correlated with the formation of a protective char layer during
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efficient due to a lack of the acid source. On the other hand, the addition of the other FRs dramatically
increased the residue under air and nitrogen atmospheres, reaching almost 19% under nitrogen at
800 °C, with the highest value observed for FR4 (16.2 + 0.4%) for LDPE-A, FR5 (19%) for LDPE-T, and
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The relevant Kissinger correlation coefficients (R2) and the calculated Eas are presented in the
Supplementary Information Table S2, where it should be mentioned that in the multistep
decomposition (under air) profiles, the Ta values used for the calculations corresponded to the highest

values of the mass loss rate. For the pure grades, the fitting of the data to the Kissinger equation is
satisfactory (R% 0.9823-0.9945), with Ea values for the LDPE grades in the range of 303-319 k] mol-,
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The relevant Kissinger correlation coefficients (R?) and the calculated E;s are presented in the
Supplementary Information Table 52, where it should be mentioned that in the multistep decomposition
(under air) profiles, the T; values used for the calculations corresponded to the highest values of the
mass loss rate. For the pure grades, the fitting of the data to the Kissinger equation is satisfactory
(R%: 0.9823-0.9945), with E, values for the LDPE grades in the range of 303-319 k] mol~}, and for
LLDPE slightly lower at 287 k] mol~!. Regarding the FR formulations of both the LDPE grades,
the fitting was generally poor, probably because of the multistep character of the decomposition
profiles. However, when comparing the data of the satisfactory fittings (R?> > 0.95), it can be seen
that the E; values in the LDPE FR-containing formulations are higher compared to those of the pure
polymers, e.g., for LDPE-A/FR3 the E, was found to be 346 k] mol~! and for LDPE-T/FR4 it was
388 k] mol~!. In the case of the LLDPE FR formulations, the Kissinger model better described the
thermo-oxidative degradation kinetics because of the higher R? values (0.914-0.989); LLDPE presented
smoother decomposition profiles than the LDPE FR compounds, being similar to those of the pure
polymer grades. The general trend for LLDPE is that the FR grades presented higher E, values
compared to the pure polymer, in the range of 308-348 k] mol~!, with FR3 presenting the highest E,
value (348 k] mol™1).

An additional thermal degradation kinetics model, the Coats-Redfern model (Equations (4) and
(5) [24]), was examined using the data of thermal (under nitrogen) and thermo-oxidative (under air)
decomposition at a heating rate of 10 °C min~!. This method can deal with the main degradation
region of the TGA curve of the material, and only requires the TGA data at one heating rate to calculate
the related reaction order #, reaction activation energy E, and the pre-exponential factor A:

B In(1-a))  [AR 2RT E,
n= 1, ln(—T) —ln[q?a(l— Ea )]—ﬁ (4)
- 1-(1-a)t™ _JAR(, _2RT\| _E, s
nEL N TR _ana(_E_u)_R_T ©)

Generally, the logarithmic term on the right part of the above equations is regarded as constant.
The determination of the reaction order n can then be finished by linear fitting of the dependence of
the left part of Equations (4) and (5) on —1/T. The n value at the best R? obtained is the real reaction
order, and the apparent E; and the pre-exponential factor A can be calculated. The relevant values
are presented in the Tables 53 and S4 in the Supplementary Material. Regarding the pure polymers
under nitrogen, the reaction order, n, was calculated close to 1, indicating a first-order degradation
kinetics, with a simple degradation reaction mechanism. E, values under nitrogen (363-537 k] mol™?)
were generally found higher compared to those in air (218413 k] mol™!), in agreement with the
aforementioned shifting of the degradation temperatures, T 50, and Ty, to lower values under air
(Figure S4 in Supplementary Material). However, when comparing the E; values both of the pure
and the flame retarded materials, under nitrogen and under air, it can be seen that the pure polymers
display E, values significantly higher than those of the flame retarded materials. Such a result is
different from the anticipated behavior, since the incorporation of FRs in the polymer matrix should
increase the polymer’s thermal stability and thus an increase in the E, value is expected. It can be
herein suggested that the Coats-Redfern method may not be applicable in the case of intumescent
flame retardants. That can be attributed to the multistep character of the flame retarded materials’
decomposition profiles [27].

3.3. Flammability

UL 94 tests are widely used to evaluate the flame resistance of polymers. The results fall into three
categories with burning ratings V0, V1, and V2, with V0 corresponding to the highest level of flame
resistance. The results of the FR-containing polyethylene grades are given in Figure 4. In all the grades,
FR1 presented a low flame resistance since the total burning time was the longest and the samples
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again be correlated with the high char yield in the TGA (14 + 1% at 800 °C) and an increase in Ta by
almost 18 °C. The other formulations (FR2, FR5, FR6) presented poorer results in terms of UL 94
P Olymef%ﬁ?&?(é legﬁeaally for FR2 it can be said that the commercial mixture of the triazine derivative with’ °f 17
APP (PPM Triazine 765) was not as efficient as the FR3-containing grade, where the same mixture
. ed in a ratio :APP = 1:3, T . FR efficiency of FR? ca CorT! ated Wlth
e R NG M O T R o
yield yras low [ te) aind Hisdpiayse wa/kggfﬁogﬁ@a%ﬁﬁflzf@mgm%%lr%a%&%@{wtrﬂs%%%vs&yggatmg
for pﬂyﬁﬁk@y@m% omdich dhe releyantaitrogerakased mdicpligeneentorisraenioneditp perform
well whenronmhinedsss thirimzinecdgsiviatives fon polyolgfinifeamsas dilasd 28k UL 94 ranking.

600 600
550 11v2,4ne (a) 550 - (b)
5004 500 4
3450_ 3450 1V0, 4 NG 1¥2, 406
o 400 400 : 3v2, 2NC
£ 350 £ 3504
9300 g
£ J £ 300
3 250 2V0, 3NC 3 250
S 200 T 200
° 2V0,1V2, 2NC °
" 150 " 150
1004 100
501 4V0.1V1 3v0,2v2 50
ol
FRG FR2 FR3 FR4 FR5 FR6
Formulations Formulations
600
3v2 2NC
550 ©
1V0. 4NC
500 4
—~ 450
0,
54001 2V0,3NC
/ TR
£ 350 —
22004
€ 300

2250_ 3V0,2NC
S 200 4
= 1504
100+
50 -

0_

FR2 FR3 FR4 FR5 FR6
Formulations

FigurBigure4LUM 9 Yensltls((total buminggtithmeaankiniginfoy Fik-BRtdjoitgipdiyetpylgretigyddas @ades.
(a) LDPEEABYIDIHET, (6) LLPTHE.

In thWhesewfijeDREHe (Higadéfde))t PRY ethadepegredesignsficteneyingffiviwate thatdhiggnerdUL 94
V0 ratthhahBs 1eswntedainalietiberingetimes sndiRghes rhreddiditn friibetessitletitiPElv and
APP ﬁqraPPSEilata&hsiléRBFci{fmag@g&memmmrﬁ “toia e enst ffgs“ec%t@blm%&ﬁlsﬂfsm of
mentioned above, and was found to Cf re effectiye (lly ﬂatlll,? fhrouﬁh the X m%
phosp SROTGS-T TOgen synergism is consi erea B¢ srovidedb 1ma (<) 10N O osphorous
fox: ulat %A Flb reason for the oorer formanj] J ﬂgﬂe retardants in LDPE-T
1v S 1

oxyn 15 a high-temperature. e51s ter erformance can pe corre ated
Y ]L£ £'can be the 16g2 homobenots ersion 0 ymer matrix ang/ I’?ﬁ

with the Teferaeedrpddiess btfﬁ?ﬁgsa?&}iﬁﬂz chighesbpnget.qb tlﬁ?gmlsﬁ%sg;%%%&%rmgrem&@?E -A

FR-containing compounds, with an increase in Td by 16 °C and a char yield of almost 10 + 1% at 800
°C under nitrogen. FR4 presented the next lower burning time (43.3 s), a performance which can again
be correlated with the high char yield in the TGA (14 + 1% at 800 °C) and an increase in T; by almost
18 °C. The other formulations (FR2, FR5, FR6) presented poorer results in terms of UL 94 ranking;
especially for FR2 it can be said that the commercial mixture of the triazine derivative with APP (PPM
Triazine 765) was not as efficient as the FR3-containing grade, where the same mixture was prepared in
a ratio CFA:APP = 1:3. The low FR efficiency of FR2 can also be correlated with the zero char yield of
the additive alone in the TGA test. The performance of all the examined LDPE-T FRs was poorer than
that of LDPE-A. Again, FR3 and FR4 can be considered to be the most promising, but they failed to
obtain a safe UL 94 ranking. In the case of LLDPE, FR3 and FR5 presented lower burning times of 356
and 235 s respectively, but again they failed in presenting a safe UL 94 ranking.

When comparing the three different polyethylene grades, it is interesting to note that in general,
all the FRs presented smaller burning times and higher reproducibility in the case of the LDPE-A
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and/or the injection step. Therefore, we performed SEM analysis on the fractured cross section
surfaces of the UL 94 bars prior to and after the testing (Figure 5).
Starting with the grade LDPE-A/FR3, which gave the safest VO ranking result, it can be seen that

P Oll/’"e{ﬁé%ad%\lgP(APP Triazine, Figure 5a,b) were well dispersed in the polymer matrix with a smali! °f 17

number of aggregates (Figure 5c). The smooth surface of the commercial APP [22] and the shape of
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in polyolefins [23]. However, the additives’ incorporation induced some gaps/voids and cavitations,
that are a sign of incompatibility and can have a negative impact on the mechanical properties [22].
The gaps/voids can especially be attributed to the premature decomposition of the APP due to internal
shear and the release of NH3. The char (Figure 5d) for LDPE-A/FR3 looks dense and coherent with an
intense foamed structure. Despite the formation of some small holes, a nicely formed intumescent
layer is observed which successfully prevented oxygen and heat exchange to penetrate deeper into the
material, thus showing the best herein flame retardance performance [20].
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In LDPE-T/FR3 (Figure 5e) and LLDPE/FR3 (Figure 5g), the additives can also be seen in the
polymer matrix, but the surface is less continuous and presents a higher extent of voids, potentially
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wt.%, FR4: 30 wt.%). More specifically, in LDPE-A, the tensﬂe strength and the elongatlon at break
decreased by 27-33% (FR3) and 23-34% (FR4), along with an increase of the Young’s modulus (E) by




Polymers 2019, 11, 1479

The relevant changes can be considered to be lower than or comparable to the values mentioned in
literature (>25% change for tensile strength) [1,21] for similar loadings of halogen-free flame retardants.
Keeping in mind that LDPE-A/FR3 is the most promising formulation in terms of safe UL94 V0 ranking,

14 of 17

it is concluded that it can also satisfy the requirements in terms of good mechanical properties.

The LDPE-T and LLDPE formulations presented changes in the tensile properties compared to the
pure grades similar to those of LDPE-A, despite the poorer distribution and dispersion of the additives
in the polymer matrix, as discussed above based on the SEM analysis. In fact, the most significant
change was observed in the Young’s modulus of LDPE-T: E increased with ca.50% for the FR3 and FR4

compared to the pure grades, with FR4 showing the highest stiffness in both grades.

Table 2. Rheological (MFR) and mechanical properties of pure polyethylene grades and selective FR

polyolefin formulations.

FRs MFR Tensile Strength ~ Elongation at  Young’s Modulus Izod Impact
(g/10 min) (MPa) Break (%) (MPa) Strength (k] m~2)

LDPE-A

Pure 0.28 +0.01 18.1+£0.2 145+ 6 133+ 6 19.1 £4.9

FR3 0.22 +0.01 13.2+0.6 96.7 +2.7 169.1 +13.8 205+ 25

FR4 0.11 £ 0.01 13.9+04 95.0 + 6.0 152.6 £ 12.5 21.5+0.7
LDPE-T

Pure 0.28 +£0.02 17.8 £0.2 130 £3 119+3 17.3+2.0

FR3 0.25+0.02 128+ 04 92.7 +14.5 178.6 £ 11.6 189+ 1.4

FR4 0.17 £ 0.01 155+ 0.4 99.1+24.1 183.9 + 15.6 204 +09
LLDPE

Pure 1.01 £0.01 13.1+0.3 420.8 £ 26.1 1304 £ 4.5 234+21

FR3 0.56 + 0.04 144 £ 0.7 315.6 +£ 59.7 140.7 + 6.3 219 +22

FR4 0.58 + 0.05 13.3+0.2 219.7 +42.0 1575+ 14.4 21.8+2.0

3.5. Melting Behavior

The melting behavior of the most promising FR formulations (FR3 and FR4 compounds) was
examined in order to identify the effect of the flame retardants on the melting point and the crystallinity

of the polyethylene grades (Table 3).

Table 3. Thermal properties of pure polyethylene grades and selective FR polyolefin formulations.

Cooling 2nd Heating
FRs
T. (O AH.(Jg™ xc (%) Tm (°O) AHp J g™ Xc (%)
LDPE-A
Pure 944 +0.0 90.7 £ 6.7 31.0+23 110.1+0.0 913 +6.8 312+23
FR3 932+1.4 108.5 + 4.4 37.0+15 1126 +0.8 1029 +7.6 351+26
FR4 91.7+£1.0 93.1+6.9 31.8+24 1140+ 1.5 93.7 £ 6.5 320+22
LDPE-T
Pure  96.1+0.1 96.9 £ 0.8 331+03 1125+0.2 974 +0.1 33.2+0.0
FR3 95.0+0.4 108.3 £ 4.8 370+ 1.6 1142 £0.7 109.2 £ 6.1 37321
FR4 95.4 +0.0 98.7+7.3 33.7+25 1146 +0.1 98.6 + 6.5 33.6 £2.2
LLDPE
Pure 1049 +0.6 919 +25 314+09 122.0+0.1 94.1+0.7 321+02
FR3  107.1+0.1 994 +24 33.9+08 124.0+0.1 1019 +25 34.8 +£0.8
FR4  108.6+0.1 86.4 +10.9 295+37 1244+02  879+106 30.0 £3.6
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Pure LDPE-T was found to crystallize earlier (at higher T.) than LDPE-A, presenting a higher
mass fraction crystallinity and a higher melting point during the 2nd heating. The crystal density in
LDPE-A was obviously lowered by the incorporation of chain imperfections into the crystal lattice
and resulted in lower values of x. [12]. Autoclave resins tend to have better see-through clarity due
to the smaller spherulites formed during the crystallization process [12]. The crystals in LLDPE,
which exhibits a higher density fraction with minimal branching, are thicker than those in LDPE [15],
and therefore the determined Tr, values were found at 122 °C, ca. 10 °C higher than those of the two
LDPEs. The minimal branching of LLDPE also permits faster melt crystallization, so the T value is
increased (ca. 105 °C for LLDPE vs. 94 and 96 °C for LDPE-A and LDPE-T respectively).

In general, the incorporation of the flame retardants (FR3, FR4) at the specific loadings (30 and
35 wt.%) did not significantly change the thermal properties of the polyethylene grades, implying
limited action of the additives as nucleating agents: A slight increase in the melting point by almost 2 °C
was found for all three PE grades, while in the case of FR3, an increase in the mass fraction crystallinity
was also observed without a significant change in the T, temperature for LDPE-A and LDPE-T. APP
was found to act as an effective nucleating agent in the case of PP at loadings of 30% wt. [29,30], so its
high content in FR3 (26.25 wt.%) may explain the higher attained crystallinity in all three the PE grades
compared to FR4. Finally, in the case of the most easily crystallizing LLDPE, the nucleating role of
the additives becomes more noticeable, since along with the increase in x.; (2nd heating), the melt
crystallization upon cooling also occurred earlier, i.e., at a noticeable higher T..

4. Conclusions

The performance of commercial halogen-free flame retardants was investigated for two grades of
low-density polyethylene (LPDE) and one linear low-density polyethylene (LLPDE). An FR formulation
of a triazine derivative and ammonium polyphosphate at a ratio of 1:3 and a total loading of 35 wt.%
was found to be the most efficient for the low-density polyethylene produced in an autoclave reactor,
achieving a UL 94 VO ranking and upgrading the thermal stability of the polymer: the thermal
degradation temperature was increased by more than 15 °C, along with a char residue which reached
10 £ 1% at 800 °C. Accordingly, the kinetics of the thermo-oxidative decomposition based on the
Kissinger model showed an increase in the activation energy, which reached 346 k] mol~! vs. 303
kJ mol~! for the pure grade. The thermal, rheological (MFR) and mechanical properties did not
significantly change for this most promising LDPE-A/FR3 formulation. On the other hand, in the
case of the other polyethylene grades (LDPE from the tubular reactor and LLDPE), the performance
of the specific formulation was poorer and correlated with the different rheological properties: The
LDPE-T and LLDPE molecules are strongly entangled due to the extensibility of the long main-chain,
increasing the melt viscosity and the internal shear, which in turn resulted in poor FRs” dispersion
and/or premature thermal decomposition of the ammonium polyphosphate and thus less FR activity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/9/1479/s1,
Figure S1: Conformation plot for (a) LLDPE, (b) LDPE-A, and (c) LDPE-T. The green line is a linear fit of the data;
Figure S2: (a) TGA curves of the pure polymers (LDPE-A, LDPE-T, LLDPE) under air and nitrogen atmosphere,
(b) Correlation between the onset of thermal degradation (T 5¢,) and the temperature at the maximum rate of
weight loss (Tj) for the pure polymers under air and nitrogen atmosphere; Figure S3: TGA curves of pure FR
additives under nitrogen atmosphere; Figure S4: Correlation between the onset of thermal degradation (T 5,) vs.
the temperature at the maximum rate of weight loss (T;) for the FR-containing compounds under (a) nitrogen and
(b) air atmosphere TGA; Table S1: Characteristics of the examined halogen-free flame retardants (FRs); Table S2:
Activation energies (E;) and correlation coefficients (R2) of thermo-oxidative degradation (TGA under air) of
FR polyolefin systems according to the Kissinger model; Table S3: The kinetic parameters (reaction order (n),
activation energy (E;), pre-exponential factor (A)) of FR polyolefin systems using the Coats-Redfern method (TGA
under nitrogen); Table S4: The kinetic parameters (reaction order (n), activation energy (E,), pre-exponential factor
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