25 research outputs found

    Psychophysical stress disturbs expression of mitochondrial biogenesis markers in hypothalamus and adenohypophysis

    Get PDF
    Summary. Although psychophysical stress is widespread in human society and a major contributor to a range of pathological conditions, it is not known if this form of stress regulates mitochondrial biogenesis in the hypothalamus or adenohypophysis, the main organs involved in compensatory specifc response of the organism to stress (so called “fght or flight” response). Accordingly, this study was designed to evaluate the effects of acute and repeated psychophysical stress on a profle of mitochondrial biogenesis markers in the hypothalamus and adenohypophysis. Rats were either lef undisturbed (freely moving, control group) or exposed to psychophysical stress by immobilization (IMO) for 2 h (acute, 1xIMO) or 2 h daily for 2 (repeated, 2xIMO) or 10 consecutive days (repeated, 10xIMO). Result suggest that all types of immobilization stress signifcantly increase expression of hypothalamic NRF1 (nuclear respiratory factor 1; acts on the genes for subunits of the OXPHOS encoded by the nuclear genome) as well as its downstream target TFAM (mitochondrial transcription factor A), the essential ubiquitous factors for mtDNA replication and expression. In the same samples, TFB1M (markedly enhance mtDNA transcription) significantly decreased, while the level of COX4 (mitochondrial complex IV cytochrome C oxidase) protein was reduced only in hypothalamuses isolated from repeatedly stressed rats. Independently of the type of stress, the level of PGC1 protein, the master regulator of mitochondrial biogenesis involved in transcriptional control of all processes related to mitochondrial homeostasis and integrator of environmental signals, remained unchanged. In adenohypophyses of the same animals, 10xIMO signifcantly increased expression of adenohypophyseal PGC1 as well as its downstream target TFB1M, while NRF1 and TFAM remained unchanged. Similarly to hypothalamuses, the level of COX4 protein was reduced in adenohypophyses isolated from repeatedly stressed rats. Our results provide new molecular insights into the relationship between stress and hypothalamo-adenohypophyseal axis, as well as mitochondrial biology

    Normotensive rats with PCOS exhibit the hypertensive pattern: focus on oxidative stress

    Get PDF
    Numerous evidence implies complex interrelations between polycystic ovary syndrome (PCOS) and hypertension (HT) in reproductive-age women. In this study, we aimed to investigate the potential strain differences in ovarian morphology, hemodynamic, and biochemical characteristics in an androgen-induced PCOS rat model. A total of 24 rats of 3 weeks old (12 Wistar Kyoto - WK and 12 spontaneously hypertensive rats - SHR) were divided into four groups: WK, WK PCOS, SHR, and SHR PCOS. PCOS was induced by daily s.c. injections of testosterone enanthate (1 mg/100 g body weight) administered for 5 weeks. PCOS induction led to estrus cyclicity cessation, cystic ovarian appearance, and sex hormones disturbances in both strains. The morphometric parameters in ovaries were altered in a manner of PCOS-related changes in both strains (higher number in preantral, atretic, and cystic follicles). Ultrasonographically, a significant decrease in ovarian volume (OV) was registered in PCOS groups but also in SHR compared to WK rats. All blood pressure parameters were higher in SHR compared to WK. PCOS modeling increased systolic, mean arterial, and pulse pressure in WK strain, while in SHR, only mean arterial and pulse pressure were higher. Alterations in oxidative stress parameters could provide a molecular basis for PCOS-related changes: in PCOS groups, thiobarbituric acid reactive substance and superoxide anion radical levels were higher in both strains, while superoxide dismutase and glutathione were significantly lowered

    Using Front-Face Fluorescence Spectroscopy and Biochemical Analysis of Honey to Assess a Marker for the Level of Varroa destructor Infestation of Honey Bee (Apis mellifera) Colonies

    Get PDF
    Varroa destructor is a parasitic mite responsible for the loss of honey bee (Apis mellifera) colonies. This study aimed to find a promising marker in honey for the bee colony infestation level using fluorescence spectroscopy and biochemical analyses. We examined whether the parameters of the honey samples’ fluorescence spectra and biochemical parameters, both related to proteins and phenolics, may be connected with the level of honey bee colonies’ infestation. The infestation level was highly positively correlated with the catalase activity in honey (r = 0.936). Additionally, the infestation level was positively correlated with the phenolic spectral component (r = 0.656), which was tentatively related to the phenolics in honey. No correlation was found between the diastase activity in honey and the colonies’ infestation level. The results indicate that the catalase activity in honey and the PFC1 spectral component may be reliable markers for the V. destructor infestation level of the colonies. The obtained data may be related to the honey yield obtained from the apiaries

    Assessing changes in global fire regimes

    Get PDF
    PAGES, Past Global Changes, is funded by the Swiss Academy of Sciences and the Chinese Academy of Sciences and supported in kind by the University of Bern, Switzerland. Financial support was provided by the U.S. National Science Foundation award numbers 1916565, EAR-2011439, and EAR-2012123. Additional support was provided by the Utah Department of Natural Resources Watershed Restoration Initiative. SSS was supported by Brigham Young University Graduate Studies. MS was supported by National Science Centre, Poland (grant no. 2018/31/B/ST10/02498 and 2021/41/B/ST10/00060). JCA was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 101026211. PF contributed within the framework of the FCT-funded project no. UIDB/04033/2020. SGAF acknowledges support from Trond Mohn Stiftelse (TMS) and University of Bergen for the startup grant ‘TMS2022STG03’. JMP participation in this research was supported by the Forest Research Centre, a research unit funded by Fundação para a Ciência e a Tecnologia I.P. (FCT), Portugal (UIDB/00239/2020). A.-LD acknowledge PAGES, PICS CNRS 06484 project, CNRS-INSU, Région Nouvelle-Aquitaine, University of Bordeaux DRI and INQUA for workshop support.Background The global human footprint has fundamentally altered wildfire regimes, creating serious consequences for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions among land use, management, and climate change will affect fire behavior, representing a key knowledge gap for sustainable management. We used expert assessment to combine opinions about past and future fire regimes from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and implications of fire regime change from the beginning of the Holocene through the year 2300. Results Respondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though natural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most study regions. Responses suggested a ten-fold increase in the frequency of fire regime change during the last 250 years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed different climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming scenarios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerging fire regimes, while recognizing that management options are constrained under higher emission scenarios. Conclusion The influence of humans on wildfire regimes has increased over the last two centuries. The perspective gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment complements empirical data and modeling, providing a broader perspective of fire science to inform decision making and future research priorities.Peer reviewe

    Generalizations of Opial-Type Inequalities in Several Independent Variables

    No full text
    In this paper, we consider Willett’s and Rozanova’s generalizations of Opial’s inequality and extend them to inequalities in several independent variables. Also, we present some new Opial-type inequalities in several independent variables

    A multi-proxy Late-glacial palaeoenvironmental record from Lake Bled, Slovenia

    Get PDF
    This study investigates the palaeoecological record (δ18O, δ13C, pollen, plant macrofossils, chironomids and cladocera) at Lake Bled (Slovenia) sedimentary core to better understand the response of terrestrial and aquatic ecosystems to Late-glacial climatic fluctuations. The multi-proxy record suggests that in the Oldest Dryas, the landscape around Lake Bled was rather open, presumably because of the cold and dry climate, with a trend towards wetter conditions, as suggested by an increase in tree pollen as well as chironomid and cladocera faunas typical for well-oxygenated water. Climatic warming at the beginning of the Late-glacial Interstadial at ca. 14,800 cal yr BP is suggested by an increase in the δ18O value, the appearance of Betula and Larix pollen and macrofossils, and a warmth-adapted chironomid fauna. With further warming at ca. 13,800 cal yr BP, broad-leaved tree taxa (Quercus, Tilia, Ulmus), Artemisia, and Picea increase, whereas chironomid data (Cricotopus B) suggest lowering of lake levels. After 12,800 cal yr BP (and throughout the Younger Dryas), the climate was colder and drier, as indicated by lower δ18O values, decline of trees, increase of microscopic charcoal, xerophytes and littoral chironomids. A warmer climate, together with the spread of broad-leaved tree taxa and a deeper, more productive lake, mark the onset of the Late-glacial/Holocene transition. These results suggest that terrestrial and aquatic ecosystems at Lake Bled were very dynamic and sensitive to Late-glacial climatic fluctuations

    A multi-proxy Late-glacial palaeoenvironmental record from Lake Bled, Slovenia

    No full text
    This study investigates the palaeoecological record (delta O-18, delta C-13, pollen, plant macrofossils, chironomids and cladocera) at Lake Bled (Slovenia) sedimentary core to better understand the response of terrestrial and aquatic ecosystems to Late-glacial climatic fluctuations. The multi-proxy record suggests that in the Oldest Dryas, the landscape around Lake Bled was rather open, presumably because of the cold and dry climate, with a trend towards wetter conditions, as suggested by an increase in tree pollen as well as chironomid and cladocera faunas typical for well-oxygenated water. Climatic warming at the beginning of the Late-glacial Interstadial at ca. 14,800 cal yr BP is suggested by an increase in the delta O-18 value, the appearance of Betula and Larix pollen and macrofossils, and a warmth-adapted chironomid fauna. With further warming at ca. 13,800 cal yr BP, broad-leaved tree taxa (Quercus, Tilia, Ulmus), Artemisia, and Picea increase, whereas chironomid data (Cricotopus B) suggest lowering of lake levels. After 12,800 cal yr BP (and throughout the Younger Dryas), the climate was colder and drier, as indicated by lower delta O-18 values, decline of trees, increase of microscopic charcoal, xerophytes and littoral chironomids. A warmer climate, together with the spread of broad-leaved tree taxa and a deeper, more productive lake, mark the onset of the Late-glacial/Holocene transition. These results suggest that terrestrial and aquatic ecosystems at Lake Bled were very dynamic and sensitive to Late-glacial climatic fluctuations.status: publishe

    Circadian desynchrony disturbs the function of rat spermatozoa

    No full text
    Decreased male fertility is a growing health problem that requires a better understanding of molecular events regulating reproductive competence. Here the effects of circadian desynchrony on the rat spermatozoa functionality were studied. Circadian desynchrony was induced in rats that lived for 2 months under disturbed light conditions designed to mimic shiftwork in humans (two days of constant light, two days of continual dark, and three days of 14:10 h light:dark schedule). Such a condition abolished circadian oscillations in the rats' voluntary activity, followed by a flattened transcriptional pattern of the pituitary gene encoding follicle stimulating hormone subunit (Fshb), and genes important for germ cell maturation (Tnp1 and Prm2) as well as the clock in seminiferous tubules. However, the number of spermatozoa isolated from the epididymis of the rats suffering from circadian desynchrony did not deviate from the controls. Nevertheless, spermatozoa functionality, estimated by motility and progesterone-induced acrosome reaction, was reduced compared to the control. These changes were associated with the altered level of main markers of mitochondrial biogenesis (Pprgc1a/PGC1A, Nrf1/NRF1, Tfam, Cytc), decreased mitochondrial DNA copy number, ATP content, and clock genes (Bmal1/BMAL1, Clock, Cry1/2, and Reverba). The principal-component-analysis (PCA) points to a positive association of the clock and mitochondrial biogenesis-related genes in spermatozoa from rats suffering circadian desynchrony. Altogether, the results show the harmful effect of circadian desynchrony on spermatozoa functionality, targeting energetic homeostasis
    corecore